A generalization of Morley's congruence

被引:17
作者
Liu, Jianxin [1 ]
Pan, Hao [2 ]
Zhang, Yong [3 ]
机构
[1] Nanjing Inst Technol, Dept Teaching Affairs, Nanjing 211167, Jiangsu, Peoples R China
[2] Nanjing Inst Technol, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Inst Technol, Dept Math & Phys, Nanjing 211167, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Morley's congruence; q-analog; binomial sums; POWERS; SUMS; RECURRENCES;
D O I
10.1186/s13662-015-0568-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an explicit formula for q-analog of Morley's congruence.
引用
收藏
页数:7
相关论文
共 10 条
[1]  
Andrews GE., 1999, Special functions, encyclopedia of mathematics and its applications
[2]  
[Anonymous], 1972, Fibonacci Quart., DOI DOI 10.1080/00150517.1972.12430893
[3]   On the residues of binomial coefficients and their products modulo prime powers [J].
Cai, TX ;
Granville, A .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (02) :277-288
[4]  
Calkin NJ, 1998, ACTA ARITH, V86, P17
[5]   RECURRENCES FOR SUMS OF POWERS OF BINOMIAL COEFFICIENTS [J].
CUSICK, TW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (01) :77-83
[6]  
DeBruijn N.G., 1981, Asymptotic Methods in Analysis
[7]   RECURRENCES FOR ALTERNATING SUMS OF POWERS OF BINOMIAL COEFFICIENTS [J].
MCINTOSH, RJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 63 (02) :223-233
[8]  
Morley F., 1895, Annals of Math., V9, P168
[9]   A q-analogue of Lehmer's congruence [J].
Pan, Hao .
ACTA ARITHMETICA, 2007, 128 (04) :303-318
[10]   SOME RECURRENCES FOR SUMS OF POWERS OF BINOMIAL COEFFICIENTS [J].
PERLSTADT, MA .
JOURNAL OF NUMBER THEORY, 1987, 27 (03) :304-309