The minimum Wiener index of unicyclic graphs with a fixed diameter

被引:10
|
作者
Tan, Shang-wang [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Peoples R China
关键词
Wiener index; Unicyclic graph; Pendant vertex; Diameter; MATCHING NUMBER; ORDERING TREES; MAXIMUM DEGREE;
D O I
10.1007/s12190-016-1063-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index is the sum of distances between all pairs of distinct vertices in a connected graph, which is the oldest topological index related to molecular branching. In the article we characterize the graphs having the minimum Wiener index among all n-vertex unicyclic graphs with a fixed diameter.
引用
收藏
页码:93 / 114
页数:22
相关论文
共 50 条
  • [31] The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
    Shang-wang Tan
    Qi-long Wang
    Yan Lin
    Journal of Applied Mathematics and Computing, 2017, 55 : 1 - 24
  • [32] Minimal skew energy of oriented unicyclic graphs with fixed diameter
    Xiang-Hao Yang
    Shi-Cai Gong
    Guang-Hui Xu
    Journal of Inequalities and Applications, 2013
  • [33] On the a-spectral radius of unicyclic and bicyclic graphs with a fixed diameter
    Wang, Feifei
    Shan, Haiying
    Zhai, Yuyao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
  • [34] Minimal skew energy of oriented unicyclic graphs with fixed diameter
    Yang, Xiang-Hao
    Gong, Shi-Cai
    Xu, Guang-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [35] The diameter and Wiener index of modular product graphs
    Zuo, Liancui
    Zhou, Jingyi
    Zhang, Shaoqiang
    ARS COMBINATORIA, 2018, 140 : 267 - 275
  • [36] Third Smallest Wiener Polarity Index of Unicyclic Graphs
    Fang, Wei
    Ma, Muhan
    Chen, FuYuan
    Dong, Hufeng
    FRONTIERS IN PHYSICS, 2020, 8
  • [37] The Wiener Index of Unicyclic Graphs with Girth and Matching Number
    Chen, Ya-Hong
    Zhang, Xiao-Dong
    ARS COMBINATORIA, 2012, 106 : 115 - 128
  • [38] On the edge-Szeged index of unicyclic graphs with given diameter
    Wang, Guangfu
    Li, Shuchao
    Qi, Dongchao
    Zhang, Huihui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 94 - 106
  • [39] On the connective eccentricity index of trees and unicyclic graphs with given diameter
    Yu, Guihai
    Qu, Hui
    Tang, Lang
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 1776 - 1786
  • [40] On the Laplacian Spectral Radius of Unicyclic Graphs with Fixed Diameter
    Guo, Shu-Guang
    ARS COMBINATORIA, 2012, 106 : 47 - 58