Thermodynamics of hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene from T→0 to T=450 K

被引:9
|
作者
Lebedev, BV [1 ]
Kulagina, TG
Tur, DR
机构
[1] Nizhny Novgorod State Univ, Inst Chem, Nizhnii Novgorod, Russia
[2] Russian Acad Sci, Inst Organoelement Cpds, Moscow, Russia
来源
JOURNAL OF CHEMICAL THERMODYNAMICS | 1999年 / 31卷 / 06期
基金
俄罗斯基础研究基金会;
关键词
phosphazenes; heat capacity; melting temperature; enthalpy of melting; enthalpy of combustion; enthalpy of formation; thermodynamic functions;
D O I
10.1006/jcht.1998.0472
中图分类号
O414.1 [热力学];
学科分类号
摘要
In adiabatic vacuum and dynamic calorimeters, the temperature dependence of the standard molar heat capacity C-p,m(o) of hexachlorocyclotriphospazene and octachlorocyclotetraphosphazene has been determined at temperatures in the range T = 5 K to T = 450 K: from T = 5 K to T = 340 K with an accuracy of about 0.2 per cent, and with an accuracy of 0.5 to 1.5 per cent between T = 340 K and T = 450 K. The temperatures, enthalpies. and entropies of melting of the above compounds have been determined. The experimental data were used to calculate the thermodynamic functions C-p,m(o)/R, Delta(0)(T) H-m(o)(R.K), Delta(0)(T) S-m(o)/R, and Phi(m)(o) = Delta(0)(T) S-m(o) - Delta(0)(T) H-m(o)/T (where R is the universal gas constant) in the range T --> 0 to T = 450 K, and the standard thermochemical parameters of formation Delta(f) S-m(o), Delta(f)G(m)(o), and IgK(f) of the cyclophosphazenes from the elements at T = 298.15 K. The isochoric heat capacities C-V,C-m of both chlorocyclophosphazenes have been estimated over the range T --> 0 to T-fus. The first and the second cryoscopic constants have been determined. The difference in the thermodynamic properties for one phosphazene group (-NPCl2-) has been explained in terms of the different compositions and structure of the rings. (C) 1999 Academic Press.
引用
收藏
页码:697 / 710
页数:14
相关论文
共 50 条
  • [1] KINETIC-STUDIES OF THE REACTIONS OF HEXACHLOROCYCLOTRIPHOSPHAZENE AND OCTACHLOROCYCLOTETRAPHOSPHAZENE WITH T-BUTYLAMINE
    SETHARAMPATTU
    KRISHNAMURTHY, S
    SUNDARAM, PM
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1982, (01): : 67 - 71
  • [2] Thermodynamics of hemiisotactic and stereoblock polypropylenes in the range from T→0 to 640 K
    Smirnova, NN
    Lebedev, BV
    Markin, AV
    Bykova, TA
    Nedorezova, PM
    POLYMER SCIENCE SERIES A, 2003, 45 (07) : 701 - 707
  • [3] Thermodynamics of acrylic acid from T=5 K to T=330 K
    Lebedev, BV
    Kulagina, TG
    Veridusova, VV
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1999, 31 (08): : 1077 - 1084
  • [4] Thermodynamics of phenylated polyphenylene in the range from T → 0 to 640 K at standard pressure
    Smirnova, NN
    Kulagina, TG
    Markin, AV
    Shifrina, ZB
    Rusanov, AL
    THERMOCHIMICA ACTA, 2005, 425 (1-2) : 39 - 46
  • [5] Thermodynamics of 1,4-diisocyanatobutane in the range from T → (0 to 360) K at standard pressure
    Smirnova, NN
    Kandeev, KV
    Bykova, TA
    Kulagina, TG
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2006, 38 (04): : 376 - 382
  • [6] K0 A ≅ K0 A[T]
    Penner, Robert
    TOPOLOGY AND K-THEORY: LECTURES BY DANIEL QUILLEN, 2020, 2262 : 149 - 153
  • [7] Thermodynamics of dimethylene urethane and poly(dimethylene urethane) in the range from T→0 to 490 K at standard pressure
    Smirnova, NN
    Markin, AV
    Kandeev, KV
    Hocker, H
    Keul, H
    THERMOCHIMICA ACTA, 2004, 409 (01) : 55 - 62
  • [8] Thermodynamics of crystalline dimer of fullerene C60 in the range from T→0 to 340 K at standard pressure
    Lebedev, BV
    Markin, AV
    Davydov, VA
    Kashevarova, LS
    Rakhmanina, AV
    THERMOCHIMICA ACTA, 2003, 399 (1-2) : 99 - 108
  • [9] Thermodynamics of linear poly(pentamethylene urethane and poly(hexamethylene urethane) in the range from 0 to 450 K
    Lebedev, B
    Kulagina, T
    Smirnova, N
    Markin, A
    Meijer, B
    Versteegen, R
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2004, 205 (02) : 230 - 240
  • [10] Thermodynamics of polyvinylacetate from 0 to 350 K
    Lebedev, BV
    Kulagina, TG
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1998, 54 (03): : 731 - 740