The limit of W1,1 homeomorphisms with finite distortion

被引:31
作者
Fusco, N. [1 ]
Moscariello, G. [1 ]
Sbordone, C. [1 ]
机构
[1] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
D O I
10.1007/s00526-008-0169-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the limit f of a weakly convergent sequence of W-1,W-1 homeomorphisms f (j) with finite distortion has finite distortion as well, provided that it is a homeomorphism. Moreover, the lower semicontinuity of the distortions is deduced both in case of outer and inner distortion.
引用
收藏
页码:377 / 390
页数:14
相关论文
共 16 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]   Extremal mappings of finite distortion [J].
Astala, K. ;
Iwaniec, T. ;
Martin, G. J. ;
Onninen, J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :655-702
[4]   CONTINUITY AND COMPACTNESS OF MEASURES [J].
BROOKS, JK ;
CHACON, RV .
ADVANCES IN MATHEMATICS, 1980, 37 (01) :16-26
[5]  
CSORNYEI M, 2007, HOMEOMORPHISMS SOBOL
[6]  
DACOROGNA B, 1990, CR ACAD SCI I-MATH, V311, P393
[7]   WEAK LOWER SEMICONTINUITY OF POLYCONVEX INTEGRALS - A BORDERLINE CASE [J].
DALMASO, G ;
SBORDONE, C .
MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (04) :603-609
[8]  
Federer H., 2014, GEOMETRIC MEASURE TH
[9]   A DIRECT PROOF FOR LOWER SEMICONTINUITY OF POLYCONVEX FUNCTIONALS [J].
FUSCO, N ;
HUTCHINSON, JE .
MANUSCRIPTA MATHEMATICA, 1995, 87 (01) :35-50
[10]  
Gehring FW, 1999, ANN ACAD SCI FENN-M, V24, P253