Asymptotic expansions for the congestion period for the M/M/∞ queue

被引:4
|
作者
Knessl, C
Yang, YP
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, Chicago, IL 60607 USA
[2] St Thomas Univ, Dept Math, St Paul, MN 55105 USA
基金
美国国家科学基金会;
关键词
M/M/infinity queue; busy period; asymptotics;
D O I
10.1023/A:1012752719211
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the M/M/infinity queue with arrival rate lambda, service rate mu and traffic intensity rho=lambda/mu. We analyze the first passage distribution of the time the number of customers N(t) reaches the level c, starting from N(0)=m >c. If m=c+1 we refer to this time period as the congestion period above the level c. We give detailed asymptotic expansions for the distribution of this first passage time for rho --> infinity, various ranges of m and c, and several different time scales. Numerical studies back up the asymptotic results.
引用
收藏
页码:213 / 256
页数:44
相关论文
共 50 条
  • [1] Asymptotic Expansions for the Congestion Period for the M/M/∞ Queue
    Charles Knessl
    Yongzhi Peter Yang
    Queueing Systems, 2001, 39 : 213 - 256
  • [2] Asymptotic expansions for the conditional sojourn time distribution in the M/M/1-PS queue
    Qiang Zhen
    Charles Knessl
    Queueing Systems, 2007, 57 : 157 - 168
  • [3] Asymptotic expansions for the conditional sojourn time distribution in the M/M/1-PS queue
    Zhen, Qiang
    Knessl, Charles
    QUEUEING SYSTEMS, 2007, 57 (04) : 157 - 168
  • [4] Analysis of congestion periods of an M/M/∞-queue
    Roijers, Frank
    Mandjes, Michel
    van den Berg, Hans
    PERFORMANCE EVALUATION, 2007, 64 (7-8) : 737 - 754
  • [5] Asymptotic expansions for the sojourn time distribution in the M/G/1-PS queue
    Qiang Zhen
    Charles Knessl
    Mathematical Methods of Operations Research, 2010, 71 : 201 - 244
  • [6] Asymptotic expansions for the sojourn time distribution in the M/G/1-PS queue
    Zhen, Qiang
    Knessl, Charles
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2010, 71 (02) : 201 - 244
  • [7] The Bergström–Grigelionis asymptotic expansions
    Algimantas Bikelis
    Kazimieras Padvelskis
    Lithuanian Mathematical Journal, 2013, 53 : 121 - 142
  • [8] Some asymptotic results for the M/M/∞ queue with ranked servers
    Knessl, C
    QUEUEING SYSTEMS, 2004, 47 (03) : 201 - 250
  • [9] Some Asymptotic Results for the M/M/∞ Queue with Ranked Servers
    Charles Knessl
    Queueing Systems, 2004, 47 : 201 - 250
  • [10] Asymptotic Behavior of Extreme Values of Queue Length in M / M / m Systems
    B. V. Dovhai
    I. K. Matsak
    Cybernetics and Systems Analysis, 2019, 55 : 321 - 328