On Structural Health Monitoring Using Tensor Analysis and Support Vector Machine with Artificial Negative Data

被引:9
作者
Cheema, Prasad [1 ]
Nguyen Lu Dang Khoa [1 ]
Alamdari, Mehrisadat Makki [1 ]
Liu, Wei [2 ]
Wang, Yang [1 ]
Chen, Fang [1 ]
机构
[1] CSIRO, Data61, Kawana, Qld, Australia
[2] Univ Technol Sydney, AAI, Sydney, NSW, Australia
来源
CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT | 2016年
关键词
Tensor analysis; damage identification; artificial negative data; density estimation; support vector machine; DECOMPOSITIONS;
D O I
10.1145/2983323.2983359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Structural health monitoring is a condition-based technology to monitor infrastructure using sensing systems. Since we usually only have data associated with the healthy state of a structure, one-class approaches arc more practical. However, tuning the parameters for one-class techniques (like one-class Support Vector Machines) still remains a relatively open and difficult problem. Moreover, in structural health monitoring, data arc usually multi-way, highly redundant and correlated, which a matrix-based two-way approach cannot capture all these relationships and correlations together. Tensor analysis allows us to analyse the multi-way vibration data at the same time. In our approach, we propose the use of tensor learning and support vector machines with artificial negative data generated by density estimation techniques for damage detection, localization and estimation in a one-class manner. The artificial negative data can help tuning SVM parameters and calibrating probabilistic outputs, which is not possible to do with one-class SVM. The proposed method shows promising results using data from laboratory-based structures and also with data collected from the Sydney Harbour Bridge, one of the most iconic structures in Australia. The method works better than the one-class approach and the approach without using tensor analysis.
引用
收藏
页码:1813 / 1822
页数:10
相关论文
共 31 条
  • [31] Wyss G. D., 1998, TECHNICAL REPORT