Multivariable Newton-based extremum seeking

被引:232
作者
Ghaffari, Azad [1 ,2 ]
Krstic, Miroslav [3 ]
Nesic, Dragan [4 ,5 ]
机构
[1] San Diego State Univ, Joint Doctoral Programs Aerospace & Mech, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[4] Univ Melbourne, Dept Elect, Melbourne, Vic 3010, Australia
[5] Univ Melbourne, Dept Elect Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Newton-based extremum seeking; Averaging; Singular perturbation; Stability; INSTABILITY; STABILITY; SYSTEMS;
D O I
10.1016/j.automatica.2012.05.059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Newton-based extremum seeking algorithm for the multivariable case. The design extends the recent Newton-based extremum seeking algorithms for the scalar case and introduces a dynamic estimator of the inverse of the Hessian matrix that removes the difficulty with the possible singularity of a possible direct estimate of the Hessian matrix. The estimator of the inverse of the Hessian has the form of a differential Riccati equation. We prove local stability of the new algorithm for general nonlinear dynamic systems using averaging and singular perturbations. In comparison with the standard gradient-based multivariable extremum seeking, the proposed algorithm removes the dependence of the convergence rate on the unknown Hessian matrix and makes the convergence rate, of both the parameter estimates and of the estimates of the Hessian inverse, user-assignable. In particular, the new algorithm allows all the parameters to converge with the same speed, yielding straight trajectories to the extremum even with maps that have highly elongated level sets, in contrast to curved "steepest descent" trajectories of the gradient algorithm. Simulation results show the advantage of the proposed approach over gradient-based extremum seeking, by assigning equal, desired convergence rates to all the parameters using Newton's approach. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1759 / 1767
页数:9
相关论文
共 24 条
[1]  
Airapetyan R., 1999, APPL ANAL, V73, P463
[2]  
Ariyur K. B., 2003, REAL TIME OPTIMIZATI
[3]  
Ariyur K. B., 2002, P AM CONTR C
[4]   An adaptive algorithm for control of combustion instability [J].
Banaszuk, A ;
Ariyur, KB ;
Krstic, M ;
Jacobson, CA .
AUTOMATICA, 2004, 40 (11) :1965-1972
[5]   Adaptive closed-loop separation controlon a high-lift configuration using extremum seeking [J].
Becker, Ralf ;
King, Rudibert ;
Petz, Ralf ;
Nitsche, Wolfgang .
AIAA JOURNAL, 2007, 45 (06) :1382-1392
[6]   A new extremum seeking technique and its application to maximize RF heating on FTU [J].
Carnevale, D. ;
Astolfi, A. ;
Centioli, C. ;
Podda, S. ;
Vitale, V. ;
Zaccarian, L. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :554-558
[7]   Extremum seeking control for discrete-time systems [J].
Choi, JY ;
Krstic, M ;
Ariyur, KB ;
Lee, JS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (02) :318-323
[8]   Source Seeking for Two Nonholonomic Models of Fish Locomotion [J].
Cochran, Jennie ;
Kanso, Eva ;
Kelly, Scott D. ;
Xiong, Hailong ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (05) :1166-1176
[9]   Nonholonomic Source Seeking With Tuning of Angular Velocity [J].
Cochran, Jennie ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :717-731
[10]   Adaptive extremum-seeking control of nonisothermal continuous stirred tank reactors [J].
Guay, M ;
Dochain, D ;
Perrier, M .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (13) :3671-3681