Highly efficient water desalination in carbon nanocones

被引:73
作者
Li, Wen [1 ,2 ]
Wang, Wensen [1 ]
Zhang, Yingnan [1 ]
Yan, Youguo [1 ]
Kral, Petr [2 ,3 ,4 ]
Zhang, Jun [1 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[3] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[4] Univ Illinois, Dept Biopharmaceut Sci, Chicago, IL 60607 USA
基金
中国国家自然科学基金;
关键词
NANOTUBE MEMBRANES; MOLECULAR-DYNAMICS; REVERSE-OSMOSIS; TRANSPORT; CHANNEL; PURIFICATION; SELECTIVITY; MECHANISM; NANOPORES; PROTEINS;
D O I
10.1016/j.carbon.2017.12.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inspired by the highly efficient water transport presented in hourglass-shaped aquaporin channels, molecular dynamics simulations were conducted to study water desalination in carbon nanocones (CNCs). Their desalination performance (salt rejection, water flow) depends on the cone size, angle, and flow direction (nonequilibrium). Free energy calculations reveal that ultrasmall CNCs with apex angles of 19.2 degrees provide the best desalination performance, since they contain relatively ordered water structures, providing high water flows, but have a high ion rejection rate. The desalination performance observed in these CNCs is better than in nanoporous graphene and MoS2 monolayers. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:374 / 379
页数:6
相关论文
共 67 条
[21]   Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes [J].
Guillen, Greg ;
Hoek, Eric M. V. .
CHEMICAL ENGINEERING JOURNAL, 2009, 149 (1-3) :221-231
[22]   Bioinspired Graphene Nanopores with Voltage-Tunable Ion Selectivity for Na+ and K+ [J].
He, Zhongjin ;
Zhou, Jian ;
Lu, Xiaohua ;
Corry, Ben .
ACS NANO, 2013, 7 (11) :10148-10157
[23]   Water desalination with a single-layer MoS2 nanopore [J].
Heiranian, Mohammad ;
Farimani, Amir Barati ;
Aluru, Narayana R. .
NATURE COMMUNICATIONS, 2015, 6
[24]   Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance [J].
Ho, Joseph D. ;
Yeh, Ronald ;
Sandstrom, Andrew ;
Chorny, Ilya ;
Harries, William E. C. ;
Robbins, Rebecca A. ;
Miercke, Larry J. W. ;
Stroud, Robert M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (18) :7437-7442
[25]   Fast mass transport through sub-2-nanometer carbon nanotubes [J].
Holt, JK ;
Park, HG ;
Wang, YM ;
Stadermann, M ;
Artyukhin, AB ;
Grigoropoulos, CP ;
Noy, A ;
Bakajin, O .
SCIENCE, 2006, 312 (5776) :1034-1037
[26]   Water conduction through the hydrophobic channel of a carbon nanotube [J].
Hummer, G ;
Rasaiah, JC ;
Noworyta, JP .
NATURE, 2001, 414 (6860) :188-190
[27]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935
[28]   Why are carbon nanotubes fast transporters of water? [J].
Joseph, Sony ;
Aluru, N. R. .
NANO LETTERS, 2008, 8 (02) :452-458
[29]   Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations [J].
Joung, In Suk ;
Cheatham, Thomas E., III .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (30) :9020-9041
[30]   Osmotic water transport through carbon nanotube membranes [J].
Kalra, A ;
Garde, S ;
Hummer, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10175-10180