X-ray spectroscopy of planar laser-plasma interaction experiments at the National Ignition Facility

被引:5
|
作者
Rosenberg, M. J. [1 ]
Epstein, R. [1 ]
Solodov, A. A. [1 ]
Seka, W. [1 ]
Myatt, J. F. [2 ]
Michel, P. A. [3 ]
Barrios, M. A. [3 ]
Thorn, D. B. [3 ]
Hohenberger, M. [3 ]
Moody, J. D. [3 ]
Regan, S. P. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 E River Rd, Rochester, NY 14623 USA
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
INERTIAL-CONFINEMENT-FUSION; STIMULATED RAMAN-SCATTERING; ELECTRON-TEMPERATURE; IMPLOSION; OMEGA; SHELL;
D O I
10.1063/1.5074191
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
X-ray spectroscopy has been newly used to diagnose electron temperatures in planar-geometry experiments at the National Ignition Facility (NIF) designed to study laser-plasma interactions at plasma conditions relevant to direct-drive ignition. These experiments used a buried co-mixed Mn/Co microstrip in a CH ablator in experiments that generated long scale-length plasmas susceptible to stimulated Raman scattering (SRS). Time-resolved Mn and Co K-shell spectra, diagnosed using the NIF x-ray spectrometer, were analyzed by fitting to synthetic spectra based on a detailed atomic model of emission from the microstrip. The electron temperature at the time when the microstrip passes through the quarter-critical density surface, the key region for the development of SRS, was inferred to be around 2-3 keV. These measurements constrain 2-D DRACO radiation-hydrodynamic modeling of the planar experiments, important for determining plasma conditions pertinent to SRS, and demonstrate that this platform approaches direct-drive ignition-relevant conditions. The modeling is also assessed by a direct comparison of measured spectra to modeled spectra generated by DRACO in conjunction with the atomic physics postprocessor code SPECT3D. Published under license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 48 条
  • [21] A New Gated X-Ray Detector for the Orion Laser Facility
    Clark, David D.
    Aragonez, Robert
    Archuleta, Thomas
    Fatherley, Valerie
    Hsu, Albert
    Jorgenson, Justin
    Mares, Danielle
    Oertel, John
    Oades, Kevin
    Kemshall, Paul
    Thomas, Philip
    Young, Trevor
    Pederson, Neal
    TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION, 2012, 8505
  • [22] Stimulated Raman scattering mechanisms and scaling behavior in planar direct-drive experiments at the National Ignition Facility
    Rosenberg, M. J.
    Solodov, A. A.
    Seka, W.
    Follett, R. K.
    Myatt, J. F.
    Maximov, A. V.
    Ren, C.
    Cao, S.
    Michel, P.
    Hohenberger, M.
    Palastro, J. P.
    Goyon, C.
    Chapman, T.
    Ralph, J. E.
    Moody, J. D.
    Scott, R. H. H.
    Glize, K.
    Regan, S. P.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [23] Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility
    Hoidn, O. R.
    Seidler, G. T.
    PHYSICS OF PLASMAS, 2014, 21 (01)
  • [24] Optimization of a laser plasma-based x-ray source according to WDM absorption spectroscopy requirements
    Martynenko, A. S.
    Pikuz, S. A.
    Skobelev, I. Yu.
    Ryazantsev, S. N.
    Baird, C. D.
    Booth, N.
    Dohl, L. N. K.
    Durey, P.
    Faenov, A. Ya.
    Farley, D.
    Kodama, R.
    Lancaster, K.
    McKenna, P.
    Murphy, C. D.
    Spindloe, C.
    Pikuz, T. A.
    Woolsey, N.
    MATTER AND RADIATION AT EXTREMES, 2021, 6 (01)
  • [25] X-ray conversion efficiency and radiation non-uniformity in the hohlraum experiments at Shenguang-III prototype laser facility
    Zhang, Huasen
    Yang, Dong
    Song, Peng
    Zou, Shiyang
    Zhao, Yiqing
    Li, Sanwei
    Li, Zhichao
    Guo, Liang
    Wang, Feng
    Peng, Xiaoshi
    Wei, Huiyue
    Xu, Tao
    Zheng, Wudi
    Gu, Peijun
    Pei, Wenbing
    Jiang, Shaoen
    Ding, Yongkun
    PHYSICS OF PLASMAS, 2014, 21 (11)
  • [26] Two-dimensional simulations of laser-plasma interaction and hot electron generation in the context of shock-ignition research
    Klimo, O.
    Psikal, J.
    Tikhonchuk, V. T.
    Weber, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (05)
  • [27] A novel method to measure ion density in ICF experiments using x-ray spectroscopy of cylindrical tracers
    Perez-Callejo, G.
    Barrios, M. A.
    Liedahl, D. A.
    Schneider, M. B.
    Jones, O.
    Landen, O.
    Kauffman, R. L.
    Suter, L. J.
    Moody, J. D.
    Rose, S. J.
    Wark, J. S.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [28] X-ray time-resolved diagnostics of hot electron generation in shock ignition relevant experiments
    Filippov, E. D.
    Martynenko, A. S.
    Cervenak, M.
    Antonelli, L.
    Baffigi, F.
    Cristoferetti, G.
    Gizzi, L. A.
    Pisarczyk, T.
    Mancelli, D.
    Ospina, V.
    Krus, M.
    Dudzak, R.
    Pikuz, S. A.
    Batani, D.
    Renner, O.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,
  • [29] Diagnosing the fast-heating process of the double-cone ignition scheme with X-ray spectroscopy
    Dai, Yu
    Gu, Haochen
    Fang, Ke
    Zhang, Yihang
    Zhang, Chenglong
    Dong, Yufeng
    Zhang, Zhe
    Yuan, Xiaohui
    Li, Yutong
    Zhang, Jie
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2024, 12
  • [30] Electron temperature measurement of low-energy laser produced plasma using iso-electronic x-ray spectroscopy
    Yang, JM
    Ding, YN
    Chen, B
    Zheng, ZJ
    Yang, GH
    Zhang, BH
    Wang, YM
    Zhang, WH
    ACTA PHYSICA SINICA, 2003, 52 (02) : 411 - 414