FIXED POINT AND NONLINEAR ERGODIC THEOREMS FOR NEW NONLINEAR MAPPINGS IN HILBERT SPACES

被引:0
作者
Kawasaki, Toshiharu [1 ]
Takahashi, Wataru [2 ]
机构
[1] Nihon Univ, Coll Engn, Fukushima 9638642, Japan
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
Fixed point theorem; ergodic theorem; Hilbert space; contraction mapping; nonexpansive mapping; nonspreading mapping; hybrid mapping; generalied hybrid mapping; WEAK-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a broad class of nonlinear mappings which covers the class of contractive mappings and the class of generalized hybrid mappings in a Hilbert space. Then we prove a fixed point theorem for such mappings in a Hilbert space. Furthermore, we prove a nonlinear ergodic theorem of Baillon's type in a Hilbert space. These results generalize the fixed point theorem and the nonlinear ergodic theorem proved by Kocourek, Takahashi and Yao [9].
引用
收藏
页码:529 / 540
页数:12
相关论文
共 17 条