In-situ reduced graphene oxide/geopolymer composites for efficient Cs+ immobilization

被引:13
作者
Shao, Sihang [1 ,2 ]
Ma, Siqi [1 ,2 ]
He, Peigang [1 ,2 ]
Jia, Dechang [1 ,2 ]
Yang, Hualong [1 ,2 ]
Duan, Xiaoming [1 ,2 ]
Zhou, Yu [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Adv Ceram, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Key Lab Adv Struct Funct Integrat Mat & Green Mfg, Harbin 150001, Peoples R China
来源
OPEN CERAMICS | 2021年 / 6卷
基金
中国国家自然科学基金;
关键词
Graphene oxide; Geopolymer; Mechanical properties; Pollucite; Immobilization performance; MECHANICAL-PROPERTIES; VOL-PERCENT; CERAMICS; 3Y-TZP; THERMODYNAMICS; DEGRADATION; TOUGHNESS; BEHAVIOR; NITRIDE; POWDERS;
D O I
10.1016/j.oceram.2021.100095
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In order to improve the Cs + immobilization performance of geopolymer, in-situ reduced graphene oxide (rGO) reinforced geopolymer composites (rGO/GP) were prepared and they were further high-temperature treated to get rGO/pollucite composites. Effect of rGO addition on the thermal & mechanical properties and Cs immobilization were explored. When rGO content is 0.0125%, compressive strength of the rGO/GP composite reaches the maximum value. With the rGO content further increasing, the strength of rGO/GP shows a downward trend. DSC results show that the addition of rGO can increase the pollucite formation temperature. The presence of rGO also shows an important influence on the Cs + immobilization of geopolymer. Compared with pure geopolymer, Cs immobilization rate of composite with 0.0125% rGO content increases by 11.5%. For the composites treated at 1000 degrees C, all the samples show high immobilization rate for Cs, which are higher than 99.5%, due to pollucite formation in all the composites.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Percolation threshold in ceramic composites with isotropic conducting nanoparticles [J].
Ambrozic, M. ;
Lazar, A. ;
Kocjan, A. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (04) :1684-1691
[2]   TOUGHENING BEHAVIOR IN WHISKER-REINFORCED CERAMIC MATRIX COMPOSITES [J].
BECHER, PF ;
HSUEH, CH ;
ANGELINI, P ;
TIEGS, TN .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1988, 71 (12) :1050-1061
[3]  
Bellosi A., 1992, Journal of the European Ceramic Society, V9, P83, DOI 10.1016/0955-2219(92)90049-J
[4]   New Y-TZP powders for medical grade zirconia [J].
Burger, W ;
Richter, HG ;
Piconi, C ;
Vatteroni, R ;
Cittadini, A ;
Boccalari, M .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1997, 8 (02) :113-118
[5]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .2. STRENGTH METHOD [J].
CHANTIKUL, P ;
ANSTIS, GR ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :539-543
[6]   Thermodynamic modeling of the ZrO2-YO1.5 system [J].
Chen, M ;
Hallstedt, B ;
Gauckler, LJ .
SOLID STATE IONICS, 2004, 170 (3-4) :255-274
[7]   Subcritical crack growth and thresholds in a 3Y-TZP ceramic under static and cyclic loading conditions [J].
Chevalier, J ;
Olagnon, C ;
Fantozzi, G ;
Cales, B .
CERAMICS INTERNATIONAL, 1997, 23 (03) :263-266
[8]   Mechanical Properties and Electrical Discharge Machinability of Alumina-10 vol% Zirconia-28 vol% Titanium Nitride Composites [J].
Gommeringer, Andrea ;
Kern, Frank .
CERAMICS-SWITZERLAND, 2020, 3 (02) :199-209
[9]   Electrical discharge machinable (Y, Nd) co-stabilized zirconia - Niobium carbide ceramics [J].
Gommeringer, Andrea ;
Schweizer, Christopher ;
Kern, Frank ;
Gadow, Rainer .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (11) :3723-3732
[10]   Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments [J].
Guillon, Olivier ;
Gonzalez-Julian, Jesus ;
Dargatz, Benjamin ;
Kessel, Tobias ;
Schierning, Gabi ;
Raethel, Jan ;
Herrmann, Mathias .
ADVANCED ENGINEERING MATERIALS, 2014, 16 (07) :830-849