FUNCTIONAL ADDITIVE REGRESSION

被引:86
作者
Fan, Yingying [1 ]
James, Gareth M. [1 ]
Radchenk, Peter [1 ]
机构
[1] Univ So Calif, Marshall Sch Business, Data Sci & Operat Dept, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Functional regression; shrinkage; single index model; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; MODEL; SINGLE; ESTIMATORS;
D O I
10.1214/15-AOS1346
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We suggest a new method, called Functional Additive Regression, or FAR, for efficiently performing high-dimensional functional regression. FAR extends the usual linear regression model involving a functional predictor, X(t), and a scalar response, Y, in two key respects. First, FAR uses a penalized least squares optimization approach to efficiently deal with high-dimensional problems involving a large number of functional predictors. Second, FAR extends beyond the standard linear regression setting to fit general nonlinear additive models. We demonstrate that FAR can be implemented with a wide range of penalty functions using a highly efficient coordinate descent algorithm. Theoretical results are developed which provide motivation for the FAR optimization criterion. Finally, we show through simulations and two real data sets that FAR can significantly outperform competing methods.
引用
收藏
页码:2296 / 2325
页数:30
相关论文
共 42 条
  • [1] Cross-validated estimations in the single-functional index model
    Ait-Saidi, Ahmed
    Ferraty, Frederic
    Kassa, Rabah
    Vieu, Philippe
    [J]. STATISTICS, 2008, 42 (06) : 475 - 494
  • [2] Singular value decomposition for genome-wide expression data processing and modeling
    Alter, O
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) : 10101 - 10106
  • [3] Dimension reduction in functional regression with applications
    Amato, U
    Antoniadis, A
    De Feis, I
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (09) : 2422 - 2446
  • [4] Bongiorno EG., 2014, Contributions in Infinite-dimensional Statistics and Related Topics
  • [5] Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
  • [6] Cardot H, 2003, STAT SINICA, V13, P571
  • [7] SINGLE AND MULTIPLE INDEX FUNCTIONAL REGRESSION MODELS WITH NONPARAMETRIC LINK
    Chen, Dong
    Hall, Peter
    Mueller, Hans-Georg
    [J]. ANNALS OF STATISTICS, 2011, 39 (03) : 1720 - 1747
  • [8] Nonconcave Penalized Likelihood With NP-Dimensionality
    Fan, Jianqing
    Lv, Jinchi
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5467 - 5484
  • [9] Nonconcave penalized likelihood with a diverging number of parameters
    Fan, JQ
    Peng, H
    [J]. ANNALS OF STATISTICS, 2004, 32 (03) : 928 - 961
  • [10] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360