Generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems

被引:4
作者
Barilla, David [1 ]
Caristi, Giuseppe [1 ]
Heidarkhani, Shapour [2 ]
Moradi, Shahin [2 ]
机构
[1] Univ Messina, Dept Econ, Via Verdi 75, Messina, Italy
[2] Razi Univ, Dept Math, Fac Sci, Kermanshah 67149, Iran
关键词
Three solutions; generalized Yamabe equations; Riemannian manifold; Emden-Fowler problem; variational methods; NONLINEAR ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS; ASYMPTOTICS; BIFURCATION; CONVECTION;
D O I
10.2989/16073606.2019.1583293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence of solutions and multiplicity properties for generalized Yamabe equations on Riemannian manifolds. Problems of this type arise in conformal Riemannian geometry, astrophysics, and in the theories of thermionic emission, isothermal stationary gas sphere, and gas combustion. The abstract results of this paper are illustrated with Emden-Fowler equations involving sublinear terms at infinity. Two examples reveal the analytic setting of this paper.
引用
收藏
页码:547 / 567
页数:21
相关论文
共 45 条
[31]  
KAZDAN JL, 1975, J DIFFER GEOM, V10, P113, DOI [10.4310/jdg/1214432678, DOI 10.4310/JDG/1214432678]
[32]  
Kong L., 2013, ELECTRON J DIFFER EQ, V2013, P1
[33]  
Kristaly A., 2010, CAMBRIDGE, V136, pxvi
[34]   ASYMPTOTICALLY CRITICAL PROBLEMS ON HIGHER-DIMENSIONAL SPHERES [J].
Kristaly, Alexandru .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :919-935
[35]  
Kristály A, 2008, NODEA-NONLINEAR DIFF, V15, P209, DOI 10.1007/s00030-007-7015-7
[36]   Bifurcation effects in sublinear elliptic problems on compact Riemannian manifolds [J].
Kristaly, Alexandru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) :179-184
[37]   Multiple Solutions for a Class of Neumann Elliptic Problems on Compact Riemannian Manifolds with Boundary [J].
Kristaly, Alexandru ;
Papageorgiou, Nikolaos S. ;
Varga, Csaba .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (04) :674-683
[38]   Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations [J].
Kristaly, Alexandru ;
Radulescu, Vicentiu .
STUDIA MATHEMATICA, 2009, 191 (03) :237-246
[39]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91
[40]   A Multiplicity Result for a Class of Elliptic Problems on a Compact Riemannian Manifold [J].
Lisei, Hannelore ;
Varga, Csaba .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) :912-927