Spatial Resolution of Coherent Cathodoluminescence Super-Resolution Microscopy

被引:21
作者
Schefold, Joris [1 ]
Meuret, Sophie [1 ,3 ]
Schilder, Nick [1 ]
Coenen, Toon [1 ,2 ]
Agrawal, Harshal [1 ]
Garnett, Erik C. [1 ]
Polman, Albert [1 ]
机构
[1] AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands
[2] Delmic BV, Kanaalweg 4, NL-2628 EB Delft, Netherlands
[3] CEMES, CNRS, Toulouse, France
基金
欧洲研究理事会;
关键词
cathodoluminescence; spatial resolution; plasmon resonance; super-resolution; imaging; ENERGY-LOSS SPECTROSCOPY; SURFACE-PLASMONS; ELECTRON; MODES; SCATTERING;
D O I
10.1021/acsphotonics.9b00164
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the nanoscale excitation of Ag nanocubes with coherent cathodoluminescence imaging spectroscopy (CL) to resolve the factors that determine the spatial resolution of CL as a deep-subwavelength imaging technique. The 10-30 keV electron beam coherently excites localized plasmons in 70 nm Ag cubes at 2.4 and 3.1 eV. The radiation from these plasmon modes is collected in the far field together with the secondary electron intensity. CL line scans across the nanocubes show exponentially decaying tails away from the cube that reveal the evanescent coupling of the electron field to the resonant plasmon modes. The measured CL decay lengths range from 8 nm (10 keV) to 12 nm (30 keV) and differ from the calculated ones by only 1-3 nm. A statistical model of electron scattering inside the Ag nanocubes is developed to analyze the secondary electron images and compare them with the CL data. The Ag nanocube edges are derived from the CL line scans with a systematic error less than 3 nm. The data demonstrate that CL probes the electron-induced plasmon fields with nanometer accuracy.
引用
收藏
页码:1067 / 1072
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 1990, Cathodoluminescence Microscopy of Inorganic Solids
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]   Mapping surface plasmons at the nanometre scale with an electron beam [J].
Bosman, Michel ;
Keast, Vicki J. ;
Watanabe, Masashi ;
Maaroof, Abbas I. ;
Cortie, Michael B. .
NANOTECHNOLOGY, 2007, 18 (16)
[4]   Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or dielectric surface [J].
Brenny, Benjamin J. M. ;
Polman, Albert ;
Garcia de Abajo, F. Javier .
PHYSICAL REVIEW B, 2016, 94 (15)
[5]   DETERMINATION OF RELATIVE ELECTRON INELASTIC MEAN FREE PATHS (ESCAPE DEPTHS) AND PHOTOIONISATION CROSS-SECTIONS BY X-RAY PHOTOELECTRON-SPECTROSCOPY [J].
CADMAN, P ;
EVANS, S ;
SCOTT, JD ;
THOMAS, JM .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1975, 71 :1777-1784
[6]   Cathodoluminescence for the 21st century: Learning more from light [J].
Coenen, T. ;
Haegel, N. M. .
APPLIED PHYSICS REVIEWS, 2017, 4 (03)
[7]  
Coenen T., 2016, Micros Today, V24, P12, DOI DOI 10.1017/S1551929516000377
[8]   Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures [J].
Coenen, Toon ;
Schoen, David T. ;
Brenny, Benjamin J. M. ;
Polman, Albert ;
Brongersma, Mark L. .
PHYSICAL REVIEW B, 2016, 93 (19)
[9]   Directional emission from a single plasmonic scatterer [J].
Coenen, Toon ;
Arango, Felipe Bernal ;
Koenderink, A. Femius ;
Polman, Albert .
NATURE COMMUNICATIONS, 2014, 5
[10]   Resonant Modes of Single Silicon Nanocavities Excited by Electron Irradiation [J].
Coenen, Toon ;
van de Groep, Jorik ;
Polman, Albert .
ACS NANO, 2013, 7 (02) :1689-1698