Background Subtraction Based on Gaussian Mixture Model

被引:2
作者
Liu, Defang [1 ]
Deng, Ming [1 ]
Wang, Daimu [1 ]
机构
[1] Fuyang Normal Coll, Coll Comp & Informat, Fuyang 236037, Anhui, Peoples R China
来源
MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4 | 2013年 / 694-697卷
关键词
gaussian mixture model; background subtraction; video sequences;
D O I
10.4028/www.scientific.net/AMR.694-697.2021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
According to the detection of moving objects in video sequences, the paper puts forward background subtraction based on Gauss mixture model. It analyzes the usual pixel-level approach, and to develop an efficient adaptive algorithm using Gaussian mixture probability density. Recursive equations are used to constantly update the parameters and but also to simultaneously select the appropriate number of components for each pixel.
引用
收藏
页码:2021 / 2026
页数:6
相关论文
共 12 条
[1]   A framework for model-based tracking experiments in image sequences [J].
Dahlkamp, Hendrik ;
Nagel, Hans-Hellmut ;
Ottlik, Artur ;
Reuter, Paul .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 73 (02) :139-157
[2]  
Hayman E., 2003, P ICCV
[3]  
Jian Zhao, 2012, MULTIMEDIA TOOLS APP
[4]  
Ko T, 2008, LECT NOTES COMPUT SC, V5304, P276, DOI 10.1007/978-3-540-88690-7_21
[5]  
Konstantinos E, 2010, LECT NOTES COMPUTER, V6453, P405
[6]  
Kwolek B, 2011, LECT NOTES COMPUT SC, V6930, P169
[7]  
Li YB, 2006, LECT NOTES COMPUT SC, V4222, P762
[8]  
Monnet A, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P1305
[9]   Detecting moving shadows: Algorithms and evaluation [J].
Prati, A ;
Mikic, I ;
Trivedi, MM ;
Cucchiara, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (07) :918-923
[10]   Robust and efficient foreground analysis in complex surveillance videos [J].
Tian, YingLi ;
Senior, Andrew ;
Lu, Max .
MACHINE VISION AND APPLICATIONS, 2012, 23 (05) :967-983