Effective numerical method of spectral analysis of quantum graphs

被引:7
作者
Barrera-Figueroa, Victor [1 ]
Rabinovich, Vladimir S. [2 ]
机构
[1] Inst Politecn Nacl, Posgrad Tecnol Avanzada, SEPI UPIITA, Av Inst Politecn Nal 2580, Mexico City 07340, DF, Mexico
[2] Inst Politecn Nacl, SEPI ESIME, Dept Telecomunicac, Av Inst Politecn Nal S-N, Mexico City 07738, DF, Mexico
关键词
periodic quantum graphs; band-gap spectrum; spectral parameter; power series (SPPS); dispersion equation; Dirac points; PARAMETER POWER-SERIES; KIRCHHOFFS RULE; OPERATORS; ZEROS; DISPERSION; MECHANICS; ELECTRONS; EQUATION;
D O I
10.1088/1751-8121/aa6cc6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present in the paper an effective numerical method for the determination of the spectra of periodic metric graphs equipped by Schrodinger operators with real-valued periodic electric potentials as Hamiltonians and with Kirchhoff and Neumann conditions at the vertices. Our method is based on the spectral parameter power series method, which leads to a series representation of the dispersion equation, which is suitable for both analytical and numerical calculations. Several important examples demonstrate the effectiveness of our method for some periodic graphs of interest that possess potentials usually found in quantum mechanics.
引用
收藏
页数:33
相关论文
共 73 条
  • [21] Do Ngoc T., 2013, Nanoscale Systems: Mathematical Modeling, Theory and Applications, V2, P107, DOI 10.2478/nsmmt-2013-0007
  • [22] On the quantum graph spectra of graphyne nanotubes
    Do, Ngoc
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 5 (01) : 39 - 65
  • [23] EDREI A, 1983, LECT NOTES MATH, V1002, P1
  • [24] Exner P, 2015, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-319-18576-7_1
  • [25] Wave Packets in Honeycomb Structures and Two-Dimensional Dirac Equations
    Fefferman, Charles L.
    Weinstein, Michael I.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) : 251 - 286
  • [26] Flugge S., 1999, Practical Quantum Mechanics
  • [27] Garrett Birkhoff, 1989, Ordinary Differential Equations
  • [28] Can one hear the shape of a graph?
    Gutkin, B
    Smilansky, U
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31): : 6061 - 6068
  • [29] On occurrence of spectral edges for periodic operators inside the Brillouin zone
    Harrison, J. M.
    Kuchment, P.
    Sobolev, A.
    Winn, B.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) : 7597 - 7618
  • [30] Experimental simulation of quantum graphs by microwave networks
    Hul, O
    Bauch, S
    Pakonski, P
    Savytskyy, N
    Zyczkowski, K
    Sirko, L
    [J]. PHYSICAL REVIEW E, 2004, 69 (05): : 7 - 1