Elliptic Harnack inequalities for symmetric non-local Dirichlet forms

被引:16
作者
Chen, Zhen-Qing [1 ]
Kumagai, Takashi [2 ]
Wang, Jian [3 ,4 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[3] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350007, Fujian, Peoples R China
[4] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Fujian, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 125卷
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Non-local Dirichlet form; Elliptic Harnack inequality; Holder regularity; Stability; HEAT KERNELS; JUMP-PROCESSES; UPPER-BOUNDS; REGULARITY; EQUATIONS; THEOREM; MINIMA;
D O I
10.1016/j.matpur.2017.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study relations and characterizations of various elliptic Harnack inequalities for symmetric non-local Dirichlet forms on metric measure spaces. We allow the scaling function be state-dependent and the state space possibly disconnected. Stability of elliptic Harnack inequalities is established under certain regularity conditions and implication for a priori Holder regularity of harmonic functions is explored. New equivalent statements for parabolic Harnack inequalities of non-local Dirichlet forms are obtained in terms of elliptic Harnack inequalities. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 40 条
[1]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[2]  
Barlow M. T., 2016, ANN MATH
[3]   Heat kernel upper bounds for jump processes and the first exit time [J].
Barlow, Martin T. ;
Grigor'yan, Alexander ;
Kumagai, Takashi .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 626 :135-157
[4]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[5]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[6]   A stability theorem for elliptic Harnack inequalities [J].
Bass, Richard F. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) :857-876
[7]   Symmetric jump processes: Localization, heat kernels and convergence [J].
Bass, Richard F. ;
Kassmann, Moritz ;
Kumagai, Takashi .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :59-71
[8]   Harnack's inequality for stable Levy processes [J].
Bogdan, K ;
Sztonyk, P .
POTENTIAL ANALYSIS, 2005, 22 (02) :133-150
[9]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[10]  
Chen Z.-Q., 2012, London Mathematical Society Monographs Series, V35