Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD

被引:29
作者
Luo, Hanjun [1 ,3 ]
Yuan, XiuHua [1 ,2 ]
Zeng, Yanan [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China
[3] Hunan Univ Sci & Technol, Sch Phys & Elect Sci, Xiangtan 411201, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
AVALANCHE PHOTODIODES; RADAR; PROBABILITIES; IMAGER; SIGNAL; CMOS;
D O I
10.1364/OE.21.018983
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we propose a combined system of heterodyne detection with laser pulse and photon counting based on Geiger-mode avalanche photodiode (GM-APD) that is designed to achieve the range of remote non-cooperative target. Based on the heterodyne principle and assuming that the creation of primary electrons in GM-APD is Poisson-distributed, the range accuracy model is established. The factors that influence the range accuracy, namely pulse width, echo intensity, local oscillator (LO) intensity, noise, echo position, and beat frequency, are discussed. The results show that these six factors have significant influence on the range accuracy when the echo intensity is extremely weak. In case that the primary electrons of the echo signal are beyond 4, the pulse width and echo intensity are the main influence factors. It is also shown that the stronger echo intensity, narrower pulse width, low noise, large echo position, and small beat frequency produce higher range accuracy in a pulsed photon heterodyne detection system based on GM-APD. (c) 2013 Optical Society of America
引用
收藏
页码:18983 / 18993
页数:11
相关论文
共 28 条
[1]   SENSITIVITY LIMITS OF AN INFRARED HETERODYNE SPECTROMETER FOR ASTROPHYSICAL APPLICATIONS [J].
ABBAS, MM ;
MUMMA, MJ ;
KOSTIUK, T ;
BUHL, D .
APPLIED OPTICS, 1976, 15 (02) :427-436
[2]   Scannerless imaging pulsed-laser range finding [J].
Ailisto, H ;
Heikkinen, V ;
Mitikka, R ;
Myllylä, R ;
Kostamovaara, J ;
Mäntyniemi, A ;
Koskinen, M .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2002, 4 (06) :S337-S346
[3]   Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser [J].
Albota, MA ;
Heinrichs, RM ;
Kocher, DG ;
Fouche, DG ;
Player, BE ;
O'Brien, ME ;
Aull, BF ;
Zayhowski, JJ ;
Mooney, J ;
Willard, BC ;
Carlson, RR .
APPLIED OPTICS, 2002, 41 (36) :7671-7678
[4]   Laser ranging:: a critical review of usual techniques for distance measurement [J].
Amann, MC ;
Bosch, T ;
Lescure, M ;
Myllylä, R ;
Rioux, M .
OPTICAL ENGINEERING, 2001, 40 (01) :10-19
[5]   Long-range three-dimensional imaging using range-gated laser radar images [J].
Andersson, Pierre .
OPTICAL ENGINEERING, 2006, 45 (03)
[6]  
Aull B. F., 2002, Lincoln Laboratory Journal, V13, P335
[7]   A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution [J].
Chi, Yue-Meng ;
Qi, Bing ;
Zhu, Wen ;
Qian, Li ;
Lo, Hoi-Kwong ;
Youn, Sun-Hyun ;
Lvovsky, A. I. ;
Tian, Liang .
NEW JOURNAL OF PHYSICS, 2011, 13
[8]   Simulation of error in optical radar range measurements [J].
Der, S ;
Redman, B ;
Chellappa, R .
APPLIED OPTICS, 1997, 36 (27) :6869-6874
[9]   COHERENT DETECTION SIGNAL-TO-NOISE [J].
FINK, D .
APPLIED OPTICS, 1975, 14 (03) :689-690
[10]   Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors [J].
Fouche, DG .
APPLIED OPTICS, 2003, 42 (27) :5388-5398