Fundamental Solutions to □b on Certain Quadrics

被引:3
作者
Boggess, Albert [1 ]
Raich, Andrew [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77845 USA
[2] 1 Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USA
关键词
Kohn Laplacian; Complex Green operator; Lie group; Quadrics; Heisenberg group; Fundamental solution; R X C; HEISENBERG-GROUP; HEAT-EQUATIONS; B COMPLEX; BOUNDARIES; OPERATORS; MANIFOLDS;
D O I
10.1007/s12220-012-9303-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this article is to expand the number of examples for which the complex Green operator, that is, the fundamental solution to the Kohn Laplacian, can be computed. We use the Lie group structure of quadric submanifolds of C-n x C-m and the group Fourier transform to reduce the square(b) equation to ones that can be solved using modified Hermite functions. We use Mehler's formula and investigate (1) quadric hypersurfaces, where the eigenvalues of the Levi form are not identical (including possibly zero eigenvalues), and (2) the canonical quadrics in C-4 of codimension two.
引用
收藏
页码:1729 / 1752
页数:24
相关论文
共 17 条
  • [1] [Anonymous], 1993, LECT HERMITE LAGUERR
  • [2] The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes
    Beals, R
    Gaveau, B
    Greiner, P
    [J]. ADVANCES IN MATHEMATICS, 1996, 121 (02) : 288 - 345
  • [3] BEALS R, 1988, ANN MATH STUDIES, V119
  • [4] Boggess A., 1991, CR manifolds and the Tangential Cauchy-Riemann Complex
  • [5] The □b-Heat Equation on Quadric Manifolds
    Boggess, Albert
    Raich, Andrew
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (02) : 256 - 275
  • [6] Boggess A, 2009, P AM MATH SOC, V137, P937
  • [7] Fundamental solutions for hermite and subelliptic operators
    Calin, Ovidiu
    Chang, Der-Chen
    Tie, Jingzhi
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 223 - 248
  • [8] PARAMETRICES AND ESTIMATES FOR DELTA-B COMPLEX ON STRONGLY PSEUDOCONVEX BOUNDARIES
    FOLLAND, GB
    STEIN, EM
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (02) : 253 - 258
  • [9] ESTIMATES FOR DELTA-BAR B COMPLEX AND ANALYSIS ON HEISENBERG GROUP
    FOLLAND, GB
    STEIN, EM
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (04) : 429 - 522
  • [10] BALLS AND METRICS DEFINED BY VECTOR-FIELDS .1. BASIC PROPERTIES
    NAGEL, A
    STEIN, EM
    WAINGER, S
    [J]. ACTA MATHEMATICA, 1985, 155 (1-2) : 103 - 147