HIERARCHICAL A POSTERIORI RESIDUAL BASED ERROR ESTIMATORS FOR BILINEAR FINITE ELEMENTS

被引:0
|
作者
Braack, Malte [1 ]
Taschenberger, Nico [1 ]
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
关键词
error estimates; adaptivity; finite elements;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present techniques of a posteriori error estimation for Q(1) finite element discretizations based on residual evaluations with respect to test functions of higher-order. This technique is designed for quadrilateral (or hexahedral) triangulations and gives local error indicators in terms of nodal contributions. We show reliability and efficiency of the estimator. Moreover, we present a simplification which is attractive from computational point of view as well.
引用
收藏
页码:466 / 480
页数:15
相关论文
共 50 条
  • [21] Residual Based a Posteriori Error Estimators for Harmonic A/φ and T/Ω Formulations in Eddy Current Problems
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Nicaise, Serge
    Piriou, Francis
    Nemitz, Nicolas
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (05) : 1721 - 1724
  • [22] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    Science China Mathematics, 2018, 61 : 973 - 992
  • [23] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Chen, Long
    Hu, Jun
    Huang, Xuehai
    Man, Hongying
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 973 - 992
  • [24] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    ScienceChina(Mathematics), 2018, 61 (06) : 973 - 992
  • [25] A posteriori error estimators for finite volume schemes for a nonlinear problem
    Bergam, A
    Mghazli, Z
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (06): : 475 - 478
  • [26] Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems
    Du, Shaohong
    Lin, Runchang
    Zhang, Zhimin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412
  • [27] A Residual a Posteriori Error Estimators for a Model for Flow in Porous Media with Fractures
    Hecht, F.
    Mghazli, Z.
    Naji, I.
    Roberts, J. E.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 935 - 968
  • [28] A Residual a Posteriori Error Estimators for a Model for Flow in Porous Media with Fractures
    F. Hecht
    Z. Mghazli
    I. Naji
    J. E. Roberts
    Journal of Scientific Computing, 2019, 79 : 935 - 968
  • [29] Some a posteriori error estimators for p-Laplacian based on residual estimation or gradient recovery
    Liu W.
    Yan N.
    Journal of Scientific Computing, 2001, 16 (04) : 435 - 477
  • [30] Residual-Based a Posteriori Error Estimation for Immersed Finite Element Methods
    He, Cuiyu
    Zhang, Xu
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2051 - 2079