Duality between quantum and classical dynamics for integrable billiards

被引:1
作者
Lu, WT [1 ]
Zeng, WQ
Sridhar, S
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Northeastern Univ, Elect Mat Res Inst, Boston, MA 02115 USA
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevE.73.046201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We establish a duality between the quantum wave vector spectrum and the eigenmodes of the classical Liouvillian dynamics for integrable billiards. Signatures of the classical eigenmodes appear as peaks in the correlation function of the quantum wave vector spectrum. A semiclassical derivation and numerical calculations are presented in support of the results. These classical eigenmodes can be observed in physical experiments through the autocorrelation of the transmission coefficient of waves in quantum billiards. Exact classical trace formulas of the resolvent are derived for the rectangle, equilateral triangle, and circle billiards. We also establish a correspondence between the classical periodic orbit length spectrum and the quantum spectrum for integrable polygonal billiards.
引用
收藏
页数:11
相关论文
共 53 条
  • [1] SPECTRAL STATISTICS - FROM DISORDERED TO CHAOTIC SYSTEMS
    AGAM, O
    ALTSHULER, BL
    ANDREEV, AV
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (24) : 4389 - 4392
  • [2] Chaotic dynamics in a three-dimensional superconducting microwave billiard
    Alt, H
    Graf, HD
    Hofferbert, R
    Rangacharyulu, C
    Rehfeld, H
    Richter, A
    Schardt, P
    Wirzba, A
    [J]. PHYSICAL REVIEW E, 1996, 54 (03): : 2303 - 2312
  • [3] ROLE OF NONPERIODIC ORBITS IN THE SEMICLASSICAL QUANTIZATION OF THE TRUNCATED HYPERBOLA BILLIARD
    AURICH, R
    HESSE, T
    STEINER, F
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (22) : 4408 - 4411
  • [4] DECAY OF ORDERED AND CHAOTIC SYSTEMS
    BAUER, W
    BERTSCH, GF
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (18) : 2213 - 2216
  • [5] The Riemann zeros and eigenvalue asymptotics
    Berry, MV
    Keating, JP
    [J]. SIAM REVIEW, 1999, 41 (02) : 236 - 266
  • [7] Effect of boundary conditions on fluctuations measures
    Biswas, D
    [J]. PHYSICAL REVIEW E, 1998, 57 (04): : R3699 - R3702
  • [8] Closed almost-periodic orbits in semiclassical quantization of generic polygons
    Biswas, D
    [J]. PHYSICAL REVIEW E, 2000, 61 (05): : 5129 - 5133
  • [9] Arbitrary trajectory quantization method
    Biswas, D
    [J]. PHYSICAL REVIEW E, 2001, 63 (01):
  • [10] Classical projected phase space density of billiards and its relation to the quantum neumann spectrum
    Biswas, D
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (20) : 204102 - 1