Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors

被引:3
作者
Lin, Fa-Hsuan [1 ,2 ]
Vesanen, Panu T. [2 ]
Nieminen, Jaakko O. [2 ]
Hsu, Yi-Cheng [3 ]
Zevenhoven, Koos C. J. [2 ]
Dabek, Juhani [2 ]
Parkkonen, Lauri T. [2 ]
Zhdanov, Andrey [2 ]
Ilmoniemi, Risto J. [2 ]
机构
[1] Natl Taiwan Univ, Inst Biomed Engn, Taipei 106, Taiwan
[2] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, Espoo, Finland
[3] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
基金
芬兰科学院; 美国国家卫生研究院;
关键词
SENSE; g-factor; ultra-low-field MRI; magnetoencephalography; MEG-MRI; conjugated gradient; parallel MRI; CONCOMITANT GRADIENTS; MICROTESLA MRI; COIL; ARTIFACTS; NMR;
D O I
10.1002/mrm.24479
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In ultra-low-field magnetic resonance imaging, arrays of up to hundreds of highly sensitive superconducting quantum interference devices (SQUIDs) can be used to detect the weak magnetic fields emitted by the precessing magnetization. Here, we investigate the noise amplification in sensitivity-encoded ultra-low-field MRI at various acceleration rates using a SQUID array consisting of 102 magnetometers, 102 gradiometers, or 306 magnetometers and gradiometers, to cover the whole head. Our results suggest that SQUID arrays consisting of 102 magnetometers and 102 gradiometers are similar in g-factor distribution. A SQUID array of 306 sensors (102 magnetometers and 204 gradiometers) only marginally improves the g-factor. Corroborating with previous studies, the g-factor in 2D sensitivity-encoded ultra-low-field MRI with 9 to 16-fold 2D accelerations using the SQUID array studied here may be acceptable. Magn Reson Med 70:595-600, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2007, INT C SERIES
[2]  
Bernstein MA, 2004, HDB MRI PULSE SEQUEN, Vxxii
[3]   Measurements of T1-relaxation in ex vivo prostate tissue at 132 μT [J].
Busch, Sarah ;
Hatridge, Michael ;
Moessle, Michael ;
Myers, Whittier ;
Wong, Travis ;
Mueck, Michael ;
Chew, Kevin ;
Kuchinsky, Kyle ;
Simko, Jeffry ;
Clarke, John .
MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (04) :1138-1145
[4]   SQUID-detected magnetic resonance imaging in microtesla fields [J].
Clarke, John ;
Hatridge, Michael ;
Moessle, Michael .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2007, 9 :389-413
[5]   MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN [J].
HAMALAINEN, M ;
HARI, R ;
ILMONIEMI, RJ ;
KNUUTILA, J ;
LOUNASMAA, OV .
REVIEWS OF MODERN PHYSICS, 1993, 65 (02) :413-497
[6]   128-Channel Body MRI With a Flexible High-Density Receiver-Coil Array [J].
Hardy, Christopher J. ;
Giaquinto, Randy O. ;
Piel, Joseph E. ;
Rohling, Kenneth W. ;
Marinelli, Luca ;
Blezek, Daniel J. ;
Fiveland, Eric W. ;
Darrow, Robert D. ;
Foo, Thomas K. F. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 28 (05) :1219-1225
[7]  
Lattanzi R., 2008, Proc. Intl. Soc. Mag. Reson. Med, V16, P1074
[8]   SQUID-detected MRI at 132 μT with T1-weighted contrast established at 10 μT-300 mT [J].
Lee, SK ;
Mössle, M ;
Myers, W ;
Kelso, N ;
Trabesinger, AH ;
Pines, A ;
Clarke, J .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (01) :9-14
[9]   Characterization of tumors using high-Tc superconducting quantum interference device-detected nuclear magnetic resonance and imaging [J].
Liao, Shu-Hsien ;
Huang, Kai-Wen ;
Yang, Hong-Chang ;
Yen, Chang-Te ;
Chen, M. J. ;
Chen, Hsin-Hsien ;
Horng, Herng-Er ;
Yang, Shieh Yueh .
APPLIED PHYSICS LETTERS, 2010, 97 (26)
[10]   Functional MRI using regularized parallel imaging acquisition [J].
Lin, FH ;
Huang, TY ;
Chen, NK ;
Wang, FN ;
Stufflebeam, SM ;
Belliveau, JW ;
Wald, LL ;
Kwong, KK .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) :343-353