On the problem of proper reparametrization for rational curves and surfaces

被引:47
作者
Pérez-Díaz, S [1 ]
机构
[1] Univ Alcala de Henares, Dept Matemat, E-28871 Alcala De Henares, Spain
关键词
proper reparametrization; rational curve; rational surface;
D O I
10.1016/j.cagd.2006.01.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A rational parametrization of an algebraic curve (resp. surface) establishes a rational correspondence of this curve (resp. surface) with the affine or projective line (resp. affine or projective plane). This correspondence is a birational equivalence if the parametrization is proper. So, intuitively speaking, a rational proper parametrization trace the curve or surface once. We consider the problem of computing a proper rational parametrization from a given improper one. For the case of curves we generalize, improve and reinterpret some previous results. For surfaces, we solve the problem for some special surface's parametrizations. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 323
页数:17
相关论文
共 31 条
[1]   A rational function decomposition algorithm by near-separated polynomials [J].
Alonso, C ;
Gutierrez, J ;
Recio, T .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 19 (06) :527-544
[2]   Parametric generalized offsets to hypersurfaces [J].
Arrondo, E ;
Sendra, J ;
Sendra, JR .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 23 (2-3) :267-285
[3]  
BRIESKORN E., 1986, Plane algebraic curves
[4]   IMPLICITIZATION OF SURFACES IN P3 IN THE PRESENCE OF BASE POINTS [J].
Buse, Laurent ;
Cox, David ;
D'Andrea, Carlos .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2003, 2 (02) :189-214
[5]  
Cox D., 1997, UNDERGRADUATE TEXTS, V2nd edn
[6]  
Cox D.A., 2001, Contemp. Math., V286, P1
[7]   The moving line ideal basis of planar rational curves [J].
Cox, DA ;
Sederberg, TW ;
Chen, FL .
COMPUTER AIDED GEOMETRIC DESIGN, 1998, 15 (08) :803-827
[8]  
GOLDMAN RN, 1984, COMPUT AIDED DESIGN, V1, P337
[10]  
GUTIERREZ J, 1992, LECT NOTES COMPUT SC, V583, P231