Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique

被引:32
作者
Kumar, Jitendra [1 ]
Warnecke, Gerald [1 ]
机构
[1] Otto von Guericke Univ Magdegurg, Inst Anal & Numer, D-39106 Magdeburg, Germany
关键词
D O I
10.1007/s00211-008-0174-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the convergence of the fixed pivot techniques (Kumar and Ramkrishna Chem. Eng. Sci. 51, 1311-1332, 1996) for breakage problems. In particular, the convergence is investigated on four different types of uniform and non-uniform meshes. It is shown that the fixed pivot technique is second order convergent on a uniform and non-uniform smooth meshes. Furthermore, it gives first order convergence on a locally uniform mesh. Finally the analysis shows that the method does not converge on a non-uniform random mesh. The mathematical results of convergence analysis are also validated numerically.
引用
收藏
页码:81 / 108
页数:28
相关论文
共 30 条
[1]  
[Anonymous], 2007, POWDER TECHNOL
[2]   THE DISCRETE COAGULATION-FRAGMENTATION EQUATIONS - EXISTENCE, UNIQUENESS, AND DENSITY CONSERVATION [J].
BALL, JM ;
CARR, J .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (1-2) :203-234
[3]  
COSTA FPD, 1998, J NONLIN SCI, V8, P619
[4]   EXACT-SOLUTIONS FOR THE COAGULATION FRAGMENTATION EQUATION [J].
DUBOVSKII, PB ;
GALKIN, VA ;
STEWART, IW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (18) :4737-4744
[5]  
Dubovskii PB, 1996, MATH METHOD APPL SCI, V19, P571, DOI 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO
[6]  
2-Q
[7]   Spline method for solving continuous batch grinding and similarity equations [J].
Everson, RC ;
Eyre, D ;
Campbell, QP .
COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 (12) :1433-1440
[8]   Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation [J].
Filbet, F ;
Laurençot, P .
ARCHIV DER MATHEMATIK, 2004, 83 (06) :558-567
[9]   NEW DISCRETIZATION PROCEDURE FOR THE BREAKAGE EQUATION [J].
HILL, PJ ;
NG, KM .
AICHE JOURNAL, 1995, 41 (05) :1204-1216
[10]  
Hundsdorfer W., 2003, NUMERICAL SOLUTION T