ON HOPF BIFURCATION OF A DELAYED PREDATOR-PREY SYSTEM WITH DIFFUSION

被引:6
作者
Liu, Jianxin [1 ]
Wei, Junjie [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 02期
基金
中国国家自然科学基金;
关键词
Predator-prey system; delay; diffusion; Hopf bifurcation; PARTIAL-DIFFERENTIAL-EQUATIONS; NORMAL FORMS; STABILITY; MODEL;
D O I
10.1142/S0218127413500235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A delayed predator-prey system with diffusion and Dirichlet boundary conditions is considered. By regarding the growth rate a of prey as a main bifurcation parameter, we show that Hopf bifurcation occurs when the parameter a is varied. Then, by using the center manifold theory and normal form method, an explicit algorithm for determining the direction of the Hopf bifurcations and stability of the bifurcating periodic solutions is derived.
引用
收藏
页数:13
相关论文
共 21 条
[1]   GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE-GOWER PREDATOR-PREY SYSTEM [J].
Chen, Shanshan ;
Shi, Junping ;
Wei, Junjie .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03)
[2]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :181-200
[5]  
Hassard B.D., 1981, Theory and Applications of Hopf Bifurcation
[6]   HOPF BIFURCATION AND STABILITY OF PERIODIC SOLUTIONS IN THE DELAYED LIENARD EQUATION [J].
Hu, Guang-Ping ;
Li, Wan-Tong ;
Yan, Xiang-Ping .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (10) :3147-3157
[7]   Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects [J].
Hu, Guang-Ping ;
Li, Wan-Tong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :819-826
[8]   CENTER MANIFOLDS FOR PARTIAL-DIFFERENTIAL EQUATIONS WITH DELAYS [J].
LIN, XD ;
SO, JWH ;
WU, JH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 122 :237-254
[9]   Bifurcation analysis in a diffusive 'food-limited' model with time delay [J].
Su, Ying ;
Wan, Aying ;
Wei, Junjie .
APPLICABLE ANALYSIS, 2010, 89 (07) :1161-1181
[10]   Bifurcation analysis in a delayed diffusive Nicholson's blowflies equation [J].
Su, Ying ;
Wei, Junjie ;
Shi, Junping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) :1692-1703