EXISTENCE AND ANALYTICITY OF LEI-LIN SOLUTION TO THE NAVIER-STOKES EQUATIONS

被引:46
作者
Bae, Hantaek [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Navier-Stokes equations; analyticity of mild solutions; REGULARITY;
D O I
10.1090/S0002-9939-2015-12266-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the recent work of Lei-Lin in a slightly different setting, which enables us to prove analyticity of the solution.
引用
收藏
页码:2887 / 2892
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2003, Uspekhi Mat. Nauk
[2]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[3]   Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted lp initial data [J].
Biswas, Animikh ;
Swanson, David .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1157-1188
[4]   Self-similar solutions for Navier-Stokes equations in R(3) [J].
Cannone, M ;
Planchon, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (1-2) :179-193
[5]  
Cannone Marco, 1995, ONDELETTES PARAPRODU
[6]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[7]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[8]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[9]  
Furioli G, 2000, REV MAT IBEROAM, V16, P605
[10]   Regularity of Solutions to the Navier-Stokes Equations Evolving from Small Data in BMO-1 [J].
Germain, Pierre ;
Pavlovic, Natasa ;
Stafflani, Gigliola .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007