Action potential and weak KAM solutions

被引:49
作者
Contreras, G [1 ]
机构
[1] CIMAT, Guanajuato 36000, Mexico
关键词
D O I
10.1007/s005260100081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For convex superlinear lagrangians on a compact manifold M we characterize the Peierls barrier and the weak KAM solutions of the Hamilton-Jacobi equation, as defined by A. Fathi [9], in terms of their values at each static class and the action potential defined by R. Mane [14]. When the manifold ill is non-compact, we construct weak KAM solutions similarly to Busemann functions in riemannian geometry. We construct a compactification Of M/(dc) by extending the Aubry set using these Busemann weak KAM solutions and characterize the set of weak KAM solutions using this extended Aubry set.
引用
收藏
页码:427 / 458
页数:32
相关论文
共 18 条
[1]  
BALLMANN W, 1985, PROGR MATH, V61
[2]   The Palais-Smale condition and Mane's critical values [J].
Contreras, G ;
Iturriaga, R ;
Paternain, GP ;
Paternain, M .
ANNALES HENRI POINCARE, 2000, 1 (04) :655-684
[3]  
Contreras G, 1998, REV CIENT-FAC CIEN V, V8, P5
[4]  
CONTRERAS G, 1999, 22 C BRAS MAT IMPA R
[5]  
Contreras G., 1997, BOL SOC BRAS MAT, V28, P155
[6]  
CONTRERAS G, IN PRESS CONNECTING
[7]  
Eberlein P., 1993, P S PURE MATH, V54, P179
[8]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[9]   Heteroclinic orbits and Peierls set [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10) :1213-1216
[10]   Weak conjugate KAM solutions and Peierls's barriers [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :649-652