An Enhanced Neural Network Based on Deep Metric Learning for Skin Lesion Segmentation

被引:0
作者
Liu, Xinhua [1 ,2 ]
Hu, Gaoqiang [1 ,2 ]
Ma, Xiaolin [1 ,2 ]
Kuang, Hailan [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan, Peoples R China
[2] Wuhan Univ Technol, Minist Educ, Key Lab Fiber Opt Sensing Technol & Informat Proc, Wuhan, Peoples R China
来源
PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019) | 2019年
关键词
Dermoscopic Images; Deep Metric Learning; Lesion Segmentation; Enhanced Neural Network;
D O I
10.1109/ccdc.2019.8832646
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate segmentation of skin lesion is a very important step in computer-aided diagnosis (CAD). However, this task is full of challenges due to the significant variations of lesion appearances across different patients. Aiming at solving the inaccuracy of segmentation, we propose a deep metric learning enhanced neural network (DMLEN) to promote the lesion segmentation result from existing method. We make full use of the relationships of pixels between the lesion area and the non-lesion area, and change the problem of pixels classification into the problem of distance measurement of pixels. In addition, an iterative enhancement scheme is proposed that gradually revises the lesion segmentation and results in a better result. Experimental results on two datasets show that the DMLEN decreases MAE 3% at least than previous methods.
引用
收藏
页码:1633 / 1638
页数:6
相关论文
共 18 条
[1]   Saliency-Based Lesion Segmentation Via Background Detection in Dermoscopic Images [J].
Ahn, Euijoon ;
Kim, Jinman ;
Bi, Lei ;
Kumar, Ashnil ;
Li, Changyang ;
Fulham, Michael ;
Feng, David Dagan .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (06) :1685-1693
[2]   Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks [J].
Bi, Lei ;
Kim, Jinman ;
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2065-2074
[3]   Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods [J].
Celebi, M. Emre ;
Wen, Quan ;
Hwang, Sae ;
Iyatomi, Hitoshi ;
Schaefer, Gerald .
SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) :E252-E258
[4]  
Codella N. C., 2017, BIOMEDICAL IMAGING
[5]  
He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[6]  
Mendonga T., 2013, ENG MED BIOL SOC EMB
[7]   Skin lesion image segmentation using Delaunay Triangulation for melanoma detection [J].
Pennisi, Andrea ;
Bloisi, Domenico D. ;
Nardi, Daniele ;
Giampetruzzi, Anna Rita ;
Mondino, Chiara ;
Facchiano, Antonio .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 52 :89-103
[8]  
Premaladha J., 2015, INDIAN J SCI TECHNOL, V8, P1, DOI [10.17485/ijst/2015/v8i22/79140, DOI 10.17485/IJST/2015/V8I22/79140]
[9]  
Riaz F., 2018, IEEE J BIOMEDICAL HL
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241