A high-throughput integrated microfluidics method enables tyrosine autophosphorylation discovery

被引:10
|
作者
Nevenzal, Hadas [1 ,2 ]
Noach-Hirsh, Meirav [1 ,2 ]
Skornik-Bustan, Or [1 ,2 ]
Brio, Lev [1 ,2 ]
Barbiro-Michaely, Efrat [1 ,2 ]
Glick, Yair [1 ,2 ]
Avrahami, Dorit [1 ,2 ]
Lahmi, Roxane [1 ,2 ]
Tzur, Amit [1 ,2 ]
Gerber, Doron [1 ,2 ]
机构
[1] Bar Ilan Univ, Mina & Everard Goodman Fac Life Sci, Bldg 206, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, Bldg 206, IL-5290002 Ramat Gan, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
PROTEIN ARRAYS; KINASE; ROR2; GROWTH; DNA; IDENTIFICATION; DEGRADATION; GENERATION; MUTATIONS; MIGRATION;
D O I
10.1038/s42003-019-0286-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] High-Throughput Affinity-Based Technologies for Small-Molecule Drug Discovery
    Zhu, Zhengrong
    Cuozzo, John
    JOURNAL OF BIOMOLECULAR SCREENING, 2009, 14 (10) : 1157 - 1164
  • [42] Isolation of enantioselective α-hydroxyacid dehydrogenases based on a high-throughput screening method
    Xue, Ya-Ping
    Wang, Wei
    Wang, Ya-Jun
    Liu, Zhi-Qiang
    Zheng, Yu-Guo
    Shen, Yin-Chu
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2012, 35 (09) : 1515 - 1522
  • [43] Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis
    Stewart, Hamish
    Grinfeld, Dmitry
    Giannakopulos, Anastassios
    Petzoldt, Johannes
    Shanley, Toby
    Garland, Matthew
    Denisov, Eduard
    Peterson, Amelia
    Damoc, Eugen
    Zeller, Martin
    Arrey, Tabiwang
    Pashkova, Anna
    Renuse, Santosh
    Hakimi, Amirmansoor
    Kuhn, Andreas
    Biel, Matthias
    Kreutzmann, Arne
    Hagedorn, Bernd
    Colonius, Immo
    Schutz, Adrian
    Stefes, Arne
    Dwivedi, Ankit
    Mourad, Daniel
    Hoek, Max
    Reitemeier, Bastian
    Cochems, Philipp
    Kholomeev, Alexander
    Ostermann, Robert
    Quiring, Gregor
    Ochmann, Maximilian
    Mohring, Sascha
    Wagner, Alexander
    Petker, Andre
    Kanngiesser, Sebastian
    Wiedemeyer, Michael
    Balschun, Wilko
    Hermanson, Daniel
    Zabrouskov, Vlad
    Makarov, Alexander
    Hock, Christian
    ANALYTICAL CHEMISTRY, 2023, 95 (42) : 15656 - 15664
  • [44] An engineered cereblon optimized for high-throughput screening and molecular glue discovery
    Bailey, Henry J.
    Eisert, Jonathan
    Kazi, Rubina
    Gerhartz, Jan
    Pienkowska, Dominika Ewa
    Dressel, Ina
    Vollrath, Joshua
    Kondratov, Ivan
    Matviyuk, Tetiana
    Tolmachova, Nataliya
    Shah, Varun Jayeshkumar
    Giuliani, Giulio
    Mosler, Thorsten
    Geiger, Thomas M.
    Esteves, Ana M.
    Santos, Sandra P.
    Sousa, Raquel L.
    Bandeiras, Tiago M.
    Leibrock, Eva-Maria
    Bauer, Ulrike
    Leuthner, Birgitta
    Langer, Julian D.
    Wegener, Ansgar A.
    Nowak, Radosla P.
    Sorrel, Fiona J.
    Dikic, Ivan
    CELL CHEMICAL BIOLOGY, 2025, 32 (02) : 363 - 376.e10
  • [45] Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum
    Nelson, James C.
    Wang, Shichen
    Wu, Yuye
    Li, Xianran
    Antony, Ginny
    White, Frank F.
    Yu, Jianming
    BMC GENOMICS, 2011, 12
  • [46] High-Throughput Discovery of Synthetic Surfaces That Support Proliferation of Pluripotent Cells
    Derda, Ratmir
    Musah, Samira
    Orner, Brendan P.
    Klim, Joseph R.
    Li, Lingyin
    Kiessling, Laura L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (04) : 1289 - 1295
  • [47] High-Throughput Nano-Biofilm Microarray for Antifungal Drug Discovery
    Srinivasan, Anand
    Leung, Kai P.
    Lopez-Ribot, Jose L.
    Ramasubramanian, Anand K.
    MBIO, 2013, 4 (04):
  • [48] Targeted High-Throughput DNA Sequencing for Gene Discovery in Retinitis Pigmentosa
    Daiger, Stephen P.
    Sullivan, Lori S.
    Bowne, Sara J.
    Birch, David G.
    Heckenlively, John R.
    Pierce, Eric A.
    Weinstock, George M.
    RETINAL DEGENERATIVE DISEASES: LABORATORY AND THERAPEUTIC INVESTIGATIONS, 2010, 664 : 325 - 331
  • [49] Discovery of microRNA Regulatory Networks by Integrating Multidimensional High-Throughput Data
    Yang, Jian-Hua
    Qu, Liang-Hu
    MICRORNA CANCER REGULATION: ADVANCED CONCEPTS, BIOINFORMATICS AND SYSTEMS BIOLOGY TOOLS, 2013, 774 : 251 - 266
  • [50] Discovery of a Novel General Anesthetic Chemotype Using High-throughput Screening
    McKinstry-Wu, Andrew R.
    Bu, Weiming
    Rai, Ganesha
    Lea, Wendy A.
    Weiser, Brian P.
    Liang, David F.
    Simeonov, Anton
    Jadhav, Ajit
    Maloney, David J.
    Eckenhoff, Roderic G.
    ANESTHESIOLOGY, 2015, 122 (02) : 325 - 333