A high-throughput integrated microfluidics method enables tyrosine autophosphorylation discovery

被引:10
|
作者
Nevenzal, Hadas [1 ,2 ]
Noach-Hirsh, Meirav [1 ,2 ]
Skornik-Bustan, Or [1 ,2 ]
Brio, Lev [1 ,2 ]
Barbiro-Michaely, Efrat [1 ,2 ]
Glick, Yair [1 ,2 ]
Avrahami, Dorit [1 ,2 ]
Lahmi, Roxane [1 ,2 ]
Tzur, Amit [1 ,2 ]
Gerber, Doron [1 ,2 ]
机构
[1] Bar Ilan Univ, Mina & Everard Goodman Fac Life Sci, Bldg 206, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, Bldg 206, IL-5290002 Ramat Gan, Israel
基金
欧洲研究理事会; 以色列科学基金会;
关键词
PROTEIN ARRAYS; KINASE; ROR2; GROWTH; DNA; IDENTIFICATION; DEGRADATION; GENERATION; MUTATIONS; MIGRATION;
D O I
10.1038/s42003-019-0286-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] High-throughput discovery of rare insertions and deletions in large cohorts
    Vallania, Francesco L. M.
    Druley, Todd E.
    Ramos, Enrique
    Wang, Jue
    Borecki, Ingrid
    Province, Michael
    Mitra, Robi D.
    GENOME RESEARCH, 2010, 20 (12) : 1711 - 1718
  • [12] SNP discovery by high-throughput sequencing in soybean
    Wu, Xiaolei
    Ren, Chengwei
    Joshi, Trupti
    Vuong, Tri
    Xu, Dong
    Nguyen, Henry T.
    BMC GENOMICS, 2010, 11
  • [13] High-Throughput Discovery of New Chemical Reactions
    Montgomery, John
    SCIENCE, 2011, 333 (6048) : 1387 - 1388
  • [14] High-throughput experimentation for discovery of biodegradable polyesters
    Fransen, Katharina A.
    Av-Ron, Sarah H. M.
    Buchanan, Tess R.
    Walsh, Dylan J.
    Rota, Dechen T.
    Van Note, Lana
    Olsen, Bradley D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (23)
  • [15] High-throughput methods in aptamer discovery and analysis
    Cole, Kyle H.
    Luptak, Andrej
    CHEMICAL AND SYNTHETIC BIOLOGY APPROACHES TO UNDERSTAND CELLULAR FUNCTIONS - PT A, 2019, 621 : 329 - 346
  • [16] High-throughput discovery of novel developmental phenotypes
    Dickinson, Mary E.
    Flenniken, Ann M.
    Ji, Xiao
    Teboul, Lydia
    Wong, Michael D.
    White, Jacqueline K.
    Meehan, Terrence F.
    Weninger, Wolfgang J.
    Westerberg, Henrik
    Adissu, Hibret
    Baker, Candice N.
    Bower, Lynette
    Brown, James M.
    Caddle, L. Brianna
    Chiani, Francesco
    Clary, Dave
    Cleak, James
    Daly, Mark J.
    Denegre, James M.
    Doe, Brendan
    Dolan, Mary E.
    Edie, Sarah M.
    Fuchs, Helmut
    Gailus-Durner, Valerie
    Galli, Antonella
    Gambadoro, Alessia
    Gallegos, Juan
    Guo, Shiying
    Horner, Neil R.
    Hsu, Chih-Wei
    Johnson, Sara J.
    Kalaga, Sowmya
    Keith, Lance C.
    Lanoue, Louise
    Lawson, Thomas N.
    Lek, Monkol
    Mark, Manuel
    Arschall, Susan M.
    Mason, Jeremy
    McElwee, Melissa L.
    Newbigging, Susan
    Nutter, Lauryl M. J.
    Peterson, Kevin A.
    Ramirez-Solis, Ramiro
    Rowland, Douglas J.
    Ryder, Edward
    Samocha, Kaitlin E.
    Seavitt, John R.
    Selloum, Mohammed
    Szoke-Kovacs, Zsombor
    NATURE, 2016, 537 (7621) : 508 - +
  • [17] High-throughput droplet-based microfluidics for directed evolution of enzymes
    Chiu, Flora W. Y.
    Stavrakis, Stavros
    ELECTROPHORESIS, 2019, 40 (21) : 2860 - 2872
  • [18] High-throughput combinatorial cell co-culture using microfluidics
    Tumarkin, Ethan
    Tzadu, Lsan
    Csaszar, Elizabeth
    Seo, Minseok
    Zhang, Hong
    Lee, Anna
    Peerani, Raheem
    Purpura, Kelly
    Zandstra, Peter W.
    Kumacheva, Eugenia
    INTEGRATIVE BIOLOGY, 2011, 3 (06) : 653 - 662
  • [19] Continuous and Segmented Flow Microfluidics: Applications in High-throughput Chemistry and Biology
    Stanley, Claire E.
    Wootton, Robert C. R.
    deMello, Andrew J.
    CHIMIA, 2012, 66 (03) : 88 - 98
  • [20] Genome variation discovery with high-throughput sequencing data
    Dalca, Adrian V.
    Brudno, Michael
    BRIEFINGS IN BIOINFORMATICS, 2010, 11 (01) : 3 - 14