Real mixed Hodge structures

被引:4
|
作者
Kapranov, Mikhail [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
Hodge structure; equivariant connection; twistor transform;
D O I
10.4171/JNCG/93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify the category of real mixed Hodge structures with the category of vector bundles with connections (not necessarily flat) on C, equivariant with respect to C*. Here C is the complex plane considered as a 2-dimensional real manifold, and C* is the multiplicative group of complex numbers considered as a real group.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 30 条
  • [21] Grothendieck standard conjectures, morphic cohomology and Hodge index theorem
    Jyh-Haur Teh
    Mathematische Zeitschrift, 2008, 260 : 849 - 864
  • [22] HODGE STRUCTURE ON THE FUNDAMENTAL GROUP AND ITS APPLICATION TO p-ADIC INTEGRATION
    Vologodsky, Vadim
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 205 - 247
  • [23] A Note on Real Line Bundles with Connection and Real Smooth Deligne Cohomology
    Flydal, Peter Marius
    Quick, Gereon
    Svanes, Eirik Eik
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (02) : 187 - 199
  • [24] Definability of mixed period maps
    Bakker, Benjamin
    Brunebarbe, Yohan
    Klingler, Bruno
    Tsimerman, Jacob
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (06) : 2191 - 2209
  • [25] Deformations and rigidity for mixed period maps
    Pearlstein, Gregory
    Peters, Chris
    ALGEBRAIC GEOMETRY, 2024, 11 (05): : 620 - 675
  • [26] Quasi-projectivity of images of mixed period maps
    Bakker, Benjamin
    Brunebarbe, Yohan
    Tsimerman, Jacob
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (804): : 197 - 219
  • [27] Generalized Elliptic Genus and Cobordism Class of Nonspin Real Grassmannians
    Haydeé Herrera
    Rafael Herrera
    Annals of Global Analysis and Geometry, 2003, 24 : 323 - 335
  • [28] Generalized elliptic genus and cobordism class of nonspin real Grassmannians
    Herrera, H
    Herrera, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (04) : 323 - 335
  • [29] Applications of affine structures to Calabi-Yau moduli spaces
    Liu, Kefeng
    Shen, Yang
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (02) : 313 - 349
  • [30] Paraconformal structures, ordinary differential equations and totally geodesic manifolds
    Krynski, Wojciech
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 103 : 1 - 19