Convergence Rates of Gradient Descent and MM Algorithms for Bradley-Terry Models

被引:0
|
作者
Vojnovic, Milan [1 ]
Yun, Se-Young [2 ]
Zhou, Kaifang [1 ]
机构
[1] LSE, London, England
[2] Korea Adv Inst Sci & Technol, Daejeon, South Korea
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108 | 2020年 / 108卷
基金
新加坡国家研究基金会;
关键词
INCOMPLETE BLOCK DESIGNS; RANK AGGREGATION; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present tight convergence rate bounds for gradient descent and MM algorithms for maximum likelihood (ML) estimation and maximum a posteriori probability (MAP) estimation of a popular Bayesian inference method, for Bradley-Terry models of ranking data. Our results show that MM algorithms have the same convergence rate, up to a constant factor, as gradient descent algorithms with optimal constant step size. For the ML estimation objective, the convergence is linear with the rate crucially determined by the algebraic connectivity of the matrix of item pair co-occurrences in observed comparison data. For the MAP estimation objective, we show that the convergence rate is also linear, with the rate determined by a parameter of the prior distribution in a way that can make convergence arbitrarily slow for small values of this parameter. The limit of small values of this parameter corresponds to a flat, non-informative prior distribution.
引用
收藏
页数:10
相关论文
共 6 条
  • [1] Convergence in High Probability of Distributed Stochastic Gradient Descent Algorithms
    Lu, Kaihong
    Wang, Hongxia
    Zhang, Huanshui
    Wang, Long
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2189 - 2204
  • [2] Convergence Rates of Zeroth Order Gradient Descent for Łojasiewicz Functions
    Wang, Tianyu
    Feng, Yasong
    INFORMS JOURNAL ON COMPUTING, 2024, 36 (06) : 1611 - 1633
  • [3] Training material models using gradient descent algorithms
    Chen, Tianju
    Messner, Mark C.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 165
  • [4] Convergence Analysis of Distributed Gradient Descent Algorithms With One and Two Momentum Terms
    Liu, Bing
    Chai, Li
    Yi, Jingwen
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1511 - 1522
  • [5] CONVERGENCE OF GRADIENT-BASED BLOCK COORDINATE DESCENT ALGORITHMS FOR NONORTHOGONAL JOINT APPROXIMATE DIAGONALIZATION OF MATRICES
    LI, J. I. A. N. Z. E.
    Usevich, K. O. N. S. T. A. N. T. I. N.
    Comon, P. I. E. R. R. E.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) : 592 - 621
  • [6] Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems
    Hu, Yaohua
    Li, Chong
    Meng, Kaiwen
    Yang, Xiaoqi
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 853 - 883