Using an unbiased symbolic movement representation to characterize Parkinson's disease states

被引:18
作者
Abrami, Avner [1 ]
Heisig, Stephen [1 ]
Ramos, Vesper [2 ,3 ]
Thomas, Kevin C. [4 ]
Ho, Bryan K. [5 ]
Caggiano, Vittorio [1 ]
机构
[1] IBM Res Healthcare & Life Sci, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[2] Pfizer, Digital Med, 610 Main St, Cambridge, MA 02139 USA
[3] Pfizer, Pfizer Innovat Res Lab, 610 Main St, Cambridge, MA 02139 USA
[4] Spivack Ctr Clin & Translat Neurosci, Lab Human Neurobiol, 650 Albany St,X-140, Boston, MA 02118 USA
[5] Tufts Med Ctr, Dept Neurol, 800 Washington St,Box 314, Boston, MA 02111 USA
关键词
BASAL GANGLIA; DISORDERS; SYMPTOMS;
D O I
10.1038/s41598-020-64181-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unconstrained human movement can be broken down into a series of stereotyped motifs or 'syllables' in an unsupervised fashion. Sequences of these syllables can be represented by symbols and characterized by a statistical grammar which varies with external situational context and internal neurological state. By first constructing a Markov chain from the transitions between these syllables then calculating the stationary distribution of this chain, we estimate the overall severity of Parkinson's symptoms by capturing the increasingly disorganized transitions between syllables as motor impairment increases. Comparing stationary distributions of movement syllables has several advantages over traditional neurologist administered in-clinic assessments. This technique can be used on unconstrained at-home behavior as well as scripted in-clinic exercises, it avoids differences across human evaluators, and can be used continuously without requiring scripted tasks be performed. We demonstrate the effectiveness of this technique using movement data captured with commercially available wrist worn sensors in 35 participants with Parkinson's disease in-clinic and 25 participants monitored at home.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
Agurto C., BODY PARTS COORDINAT
[2]  
Ahlrichs C., 2013, ARXIV, V2, P4, DOI [10.5121/hiij.2013.2401, DOI 10.5121/HIIJ.2013.2401]
[3]   Detecting and monitoring the symptoms of Parkinson's disease using smartphones: A pilot study [J].
Arora, S. ;
Venkataraman, V. ;
Zhan, A. ;
Donohue, S. ;
Biglan, K. M. ;
Dorsey, E. R. ;
Little, M. A. .
PARKINSONISM & RELATED DISORDERS, 2015, 21 (06) :650-653
[4]   Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases [J].
Artusi, Carlo Alberto ;
Mishra, Murli ;
Latimer, Patricia ;
Vizcarra, Joaquin A. ;
Lopiano, Leonardo ;
Maetzler, Walter ;
Merola, Aristide ;
Espay, Alberto J. .
PARKINSONISM & RELATED DISORDERS, 2018, 46 :S53-S56
[5]   COMPUTATIONS UNDERLYING THE EXECUTION OF MOVEMENT - A BIOLOGICAL PERSPECTIVE [J].
BIZZI, E ;
MUSSAIVALDI, FA ;
GISZTER, S .
SCIENCE, 1991, 253 (5017) :287-291
[6]   The neural origin of muscle synergies [J].
Bizzi, Emilio ;
Cheung, Vincent C. K. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7 :1-6
[7]   Wearable Sensors and Systems From Enabling Technology to Clinical Applications [J].
Bonato, Paolo .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2010, 29 (03) :25-36
[8]  
Borg I, 2005, MODERN MULTIDIMENSIO, P100
[9]   Midbrain circuits that set locomotor speed and gait selection [J].
Caggiano, V. ;
Leiras, R. ;
Goni-Erro, H. ;
Masini, D. ;
Bellardita, C. ;
Bouvier, J. ;
Caldeira, V. ;
Fisone, G. ;
Kiehn, O. .
NATURE, 2018, 553 (7689) :455-+
[10]   An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord [J].
Caggiano, Vittorio ;
Cheung, Vincent C. K. ;
Bizzi, Emilio .
SCIENTIFIC REPORTS, 2016, 6