Quantum systems in a stationary environment out of thermal equilibrium

被引:34
|
作者
Bellomo, Bruno [1 ,2 ]
Messina, Riccardo [3 ]
Felbacq, Didier [1 ,2 ]
Antezza, Mauro [1 ,2 ]
机构
[1] Univ Montpellier 2, Lab Charles Coulomb UMR 5221, F-34095 Montpellier, France
[2] CNRS, Lab Charles Coulomb UMR 5221, F-34095 Montpellier, France
[3] Univ Paris 11, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 01期
关键词
HEAT-TRANSFER; FORCE;
D O I
10.1103/PhysRevA.87.012101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss how the thermalization of an elementary quantum system is modified when the system is placed in an environment out of thermal equilibrium. To this aim we provide a detailed investigation of the dynamics of an atomic system placed close to a body of arbitrary geometry and dielectric permittivity, whose temperature T-M is different from that of the surrounding walls T-W. A suitable master equation for the general case of an N-level atom is first derived and then specialized to the cases of a two- and three-level atom. Transition rates and steady states are explicitly expressed as a function of the scattering matrices of the body and become both qualitatively and quantitatively different from the case of radiation at thermal equilibrium. Out of equilibrium, the system steady state depends on the system-body distance, on the geometry of the body, and on the interplay of all such parameters with the body optical resonances. While a two- level atom tends toward a thermal state, this is not the case already in the presence of three atomic levels. This peculiar behavior can be exploited, for example, to invert the populations ordering and to provide an efficient cooling mechanism for the internal state of the quantum system. We finally provide numerical studies and asymptotic expressions when the body is a slab of finite thickness. Our predictions can be relevant for a wide class of experimental configurations out of thermal equilibrium involving different physical realizations of two- or three-level systems. DOI: 10.1103/PhysRevA.87.012101
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Quantum systems in and out of equilibrium
    Garrido, Pedro L.
    Hurtado, Pablo
    Manzano, Daniel
    de los Santos, Francisco
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (3-4): : 201 - 202
  • [2] Introduction to 'Quantum Integrability in Out of Equilibrium Systems'
    Calabrese, Pasquale
    Essler, Fabian H. L.
    Mussardo, Giuseppe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [3] Thermal conduction in systems out of hydrostatic equilibrium
    Herrera, L
    DiPrisco, A
    HernandezPastora, JL
    Martin, J
    Martinez, J
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (08) : 2239 - 2247
  • [4] Resource Theory of Quantum States Out of Thermal Equilibrium
    Brandao, Fernando G. S. L.
    Horodecki, Michal
    Oppenheim, Jonathan
    Renes, Joseph M.
    Spekkens, Robert W.
    PHYSICAL REVIEW LETTERS, 2013, 111 (25)
  • [5] QUANTUM-FIELDS OUT OF THERMAL-EQUILIBRIUM
    EBOLI, O
    JACKIW, R
    PI, SY
    PHYSICAL REVIEW D, 1988, 37 (12): : 3557 - 3581
  • [6] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130
  • [7] Out-of-equilibrium thermodynamics of quantum optomechanical systems
    Brunelli, M.
    Xuereb, A.
    Ferraro, A.
    De Chiara, G.
    Kiesel, N.
    Paternostro, M.
    NEW JOURNAL OF PHYSICS, 2015, 17 : 1 - 15
  • [8] Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium
    Castro-Alvaredo, Olalla A.
    Doyon, Benjamin
    Yoshimura, Takato
    PHYSICAL REVIEW X, 2016, 6 (04):
  • [9] Simulations of strongly correlated quantum systems out of equilibrium
    Mamnana, S. R.
    Rodriguez, K.
    Wesse, S.
    Liuainatsu, A.
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '07, 2008, : 71 - +
  • [10] On the approach to thermal equilibrium of macroscopic quantum systems
    Goldstein, Sheldon
    Tumulka, Roderich
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 155 - 163