Basic ideals in evolution algebras

被引:13
作者
Cabrera Casado, Yolanda [1 ]
Kanuni, Muge [2 ]
Siles Molina, Mercedes [1 ]
机构
[1] Univ Malaga, Dept Matemat Aplicada, Campus Teatinos S-N, E-29071 Malaga, Spain
[2] Duzce Univ, Dept Math, TR-81620 Konuralp, Duzce, Turkey
关键词
Genetic algebra; Evolution algebra; Simple algebra; Perfect algebra; Basic ideal; Irreducible algebra;
D O I
10.1016/j.laa.2019.01.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the aim of finding useful tools and invariants to classify finite dimensional evolution algebras, we introduce and study the notion of a basic ideal. Every n-dimensional perfect evolution algebra has a maximal basic ideal I which is unique except when the dimension of I is n-1. An application of our results leads to the description of the four dimensional perfect non-simple evolution algebras over a field with mild restrictions. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 180
页数:33
相关论文
共 11 条
[1]   Classification of three-dimensional evolution algebras [J].
Cabrera Casado, Yolanda ;
Siles Molina, Mercedes ;
Victoria Velasco, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 524 :68-108
[2]   Evolution algebras of arbitrary dimension and their decompositions [J].
Cabrera Casado, Yolanda ;
Siles Molina, Mercedes ;
Victoria Velasco, M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 :122-162
[3]  
Casado Yolanda Cabrera, 2016, THESIS
[4]   On Evolution Algebras [J].
Casas, J. M. ;
Ladra, M. ;
Omirov, B. A. ;
Rozikov, U. A. .
ALGEBRA COLLOQUIUM, 2014, 21 (02) :331-342
[5]   Evolution algebras and graphs [J].
Elduque, Alberto ;
Labra, Alicia .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (07)
[6]   Classification of asexual diploid organisms by means of strongly isotopic evolution algebras defined over any field [J].
Falcon, O. J. ;
Falcon, R. M. ;
Nunez, J. .
JOURNAL OF ALGEBRA, 2017, 472 :573-593
[7]  
Gonsalves Maria Inez Cardoso, 2018, ARXIV180702362
[8]  
Silvester R., 2000, Math. Gazette, V84, P460
[9]  
Tian J. P., 2008, LECT NOTES MATH, V1921
[10]  
Tian JP., 2006, QUASIGROUPS RELAT SY, V14, P111