Reactive Oxygen Species (ROS) and Nucleic Acid Modifications During Seed Dormancy

被引:36
|
作者
Katsuya-Gaviria, Kai [1 ,2 ]
Caro, Elena [1 ,2 ]
Carrillo-Barral, Nestor [3 ]
Iglesias-Fernandez, Raquel [1 ,2 ]
机构
[1] Univ Politecn Madrid UPM, Ctr Biotecnol & Genom Plantas Severo Ochoa C, UPM INIA, Inst Nacl Invest & Tecnol Agr Alimentaria INIA, 28223 Pozuelo Alarcon, Madrid, Spain
[2] UPM, Escuela Tecn Super Ingn Agron Alimentaria & Biosc, Dept Biotecnol Biol Vegetal, Madrid 28040, Spain
[3] Univ Coruna UdC, Fac Ciencias, Dept Fisiol Vegetal, La Coruna 15008, Spain
来源
PLANTS-BASEL | 2020年 / 9卷 / 06期
关键词
after-ripening; DNA methylation; oxidation; RNA stability; seed dormancy; seed vigour; ROS; MESSENGER-RNA OXIDATION; DNA METHYLATION; ARABIDOPSIS-THALIANA; GENE-EXPRESSION; SIGNALING PATHWAYS; GERMINATION; PROTEIN; RELEASE; ABA; 5-METHYLCYTOSINE;
D O I
10.3390/plants9060679
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The seed is the propagule of higher plants and allows its dissemination and the survival of the species. Seed dormancy prevents premature germination under favourable conditions. Dormant seeds are only able to germinate in a narrow range of conditions. During after-ripening (AR), a mechanism of dormancy release, seeds gradually lose dormancy through a period of dry storage. This review is mainly focused on how chemical modifications of mRNA and genomic DNA, such as oxidation and methylation, affect gene expression during late stages of seed development, especially during dormancy. The oxidation of specific nucleotides produced by reactive oxygen species (ROS) alters the stability of the seed stored mRNAs, being finally degraded or translated into non-functional proteins. DNA methylation is a well-known epigenetic mechanism of controlling gene expression. In Arabidopsis thaliana, while there is a global increase in CHH-context methylation through embryogenesis, global DNA methylation levels remain stable during seed dormancy, decreasing when germination occurs. The biological significance of nucleic acid oxidation and methylation upon seed development is discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Reactive Oxygen Species (ROS) control mitochondrial motility
    Saotome, M.
    Hajnoczky, G.
    Hayashi, H.
    EUROPEAN HEART JOURNAL, 2009, 30 : 61 - 61
  • [32] In vitro production of reactive oxygen species (ROS) by sampangine
    Nasiri, Hamid R.
    Hohmann, Katharina
    Hatemler, Melissa G.
    Plodek, Alois
    Bracher, Franz
    Schwalbe, Harald
    MEDICINAL CHEMISTRY RESEARCH, 2017, 26 (06) : 1170 - 1175
  • [33] REACTIVE OXYGEN SPECIES (ROS) GENERATION AND DETOXIFYING IN PLANTS
    Saed-Moucheshi, Armin
    Shekoofa, Avat
    Pessarakli, Mohammad
    JOURNAL OF PLANT NUTRITION, 2014, 37 (10) : 1573 - 1585
  • [34] The role of reactive oxygen species (ROS) in persistant pain
    Chung, JM
    MOLECULAR INTERVENTIONS, 2004, 4 (05) : 248 - +
  • [35] Production and Detection of Reactive Oxygen Species (ROS) in Cancers
    Wu, Danli
    Yotnda, Patricia
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (57):
  • [36] Photocontrolled endogenous reactive oxygen species (ROS) generation
    Sharma, Ajay Kumar
    Singh, Harshit
    Chakrapani, Harinath
    CHEMICAL COMMUNICATIONS, 2019, 55 (36) : 5259 - 5262
  • [37] Reactive Oxygen Species (ROS)-responsive Organic Nanotubes
    Ding, Wuxiao
    Kameta, Naohiro
    Oyane, Ayako
    CHEMISTRY LETTERS, 2021, 50 (10) : 1743 - 1746
  • [38] Mitochondria and reactive oxygen species (ROS) in cardiac pathophysiology
    Di Lisa, Fabio
    FREE RADICAL BIOLOGY AND MEDICINE, 2016, 96 : S6 - S6
  • [39] Endogenous mechanisms of reactive oxygen species (ROS) generation
    Sarniak, Agata
    Lipinska, Joanna
    Tytman, Karol
    Lipinska, Stanislawa
    POSTEPY HIGIENY I MEDYCYNY DOSWIADCZALNEJ, 2016, 70 : 1150 - 1164
  • [40] Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology
    Aldosari, Sarah
    Awad, Maan
    Harrington, Elizabeth O.
    Sellke, Frank W.
    Abid, M. Ruhul
    ANTIOXIDANTS, 2018, 7 (01)