New UV-initiated lithiated-interpenetrating network gel-polymer electrolytes for lithium-metal batteries

被引:10
作者
Zeng, Yuejing [1 ]
Yang, Jin [1 ]
Shen, Xiu [1 ]
Li, Ruiyang [1 ]
Chen, Zhiqiang [2 ,3 ]
Huang, Xiao [1 ]
Zhang, Peng [2 ,3 ]
Zhao, Jinbao [1 ]
机构
[1] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat,State Prov, Coll Chem & Chem Engn,Engn Res Ctr Elect Technol, State Key Lab Phys Chem Solid Surfaces,Minist Edu, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Energy, Xiamen 361102, Fujian, Peoples R China
[3] Xiamen Univ, Sch Energy Res, Xiamen 361102, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Interface stability; Lithium metal batteries; UV-Irradiation; Thermal stability; Lithiated-interpenetrating network polymer; ANODES;
D O I
10.1016/j.jpowsour.2022.231681
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new lithiated-interpenetrating network gel-polymer electrolytes (LIPN-GPEs) is designed and fabricated by ultraviolet-irradiation radical polymerization. The LIPN-GPEs includes both cross-linked poly (lithiated 2-acryl-amido2-methylpropane sulfonic acid-co-polyethylene glycol acrylate) matrix C-P(AMPSLi-MPEGA) and poly-acrylonitrile (C-PAN), which forms the interpenetrating framework. The interpenetrating network ensures the mechanical strength and flexibility that eliminates volume changes of lithium anode during lithium deposition/stripping process. Meanwhile, the LIPN-GPEs with better self-supporting nature and high ionic conductivity (2.5 x 10(-3) S/cm) can promote the movement of lithium ion resulting in more uniform distribution, which realizes uniform lithium deposition with stable SEI composition. Therefore, the LIPN-GPEs indicates excellent interfacial stability towards lithium anode. Symmetrical lithium metal cell yields low overpotential of 50 mV over 4000 h at 0.5 mA cm(-2). The LIPN-GPEs with optimized ratio exhibits wider electrochemical window (5.06 V vs. Li/Li+) at ambient temperature, which also possesses unexceptional thermal stability with decomposition temperature up to 400 degrees C. Especially, when assembled with high-voltage cathode LiCoO2 (LCO) and LiNi0.5Co0.2Mn0.3O2 (NCM523) as coin cells, the LIPN-GPEs reveals cycling performance, reflecting good high-voltage resistance characteristic. This work testifies that LIPN-GPEs through a convenient ultraviolet-irradiation radical polymerization provides a candidate for lithium metal battery, which furnishes application prospects in wearable devices.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Ionogels as Polymer Electrolytes for Lithium-Metal Batteries: Comparison of Poly(ethylene glycol) Diacrylate and an Imidazolium-Based Ionic Liquid Crosslinker [J].
Hoffmann, Maxi ;
Butzelaar, Andreas J. ;
Iacob, Ciprian ;
Theato, Patrick ;
Wilhelm, Manfred .
ACS APPLIED POLYMER MATERIALS, 2022, 4 (04) :2794-2805
[32]   Lithium deposition stability using TiO2/MWCNT as artificial solid-electrolyte interphases in gel polymer electrolytes based lithium metal batteries [J].
Jang, Eunji ;
Do, Vandung ;
Lee, Seung Hun ;
Lee, Byeong Gwon ;
Lee, Je Seung ;
Cho, Won Il .
ELECTROCHIMICA ACTA, 2023, 464
[33]   Constructing a High-Performance Semi-interpenetrating Gel Polymer Electrolyte via In Situ Polymerization for Lithium Metal Batteries [J].
Liang, Yufeng ;
Feng, Tingting ;
Wu, Jintian ;
Tan, Jie ;
Wu, Mengqiang .
ACS APPLIED POLYMER MATERIALS, 2023, 5 (05) :3564-3573
[34]   SnCl4 initiated formation of polymerized solid polymer electrolytes for lithium metal batteries with fast ion transport interfaces [J].
Hao, Qingfei ;
Gao, Ying ;
Chen, Fei ;
Chen, Xiangtao ;
Qi, Yang ;
Li, Na .
CHEMICAL ENGINEERING JOURNAL, 2024, 481
[35]   Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries [J].
Zeng, Xingfa ;
Dong, Linna ;
Fu, Jifang ;
Chen, Liya ;
Zhou, Jia ;
Zong, Peisong ;
Liu, Guozhen ;
Shi, Liyi .
CHEMICAL ENGINEERING JOURNAL, 2022, 428
[36]   A rigid-flexible gel polymer electrolytes with long cycle life and dendrite-free in lithium metal batteries [J].
Song, Dakun ;
Liao, Jinlong ;
Huang, Songde ;
Yuan, Wenjie ;
Li, Cuihua ;
He, Jinhua .
JOURNAL OF ENERGY STORAGE, 2024, 75
[37]   Separator-Free In Situ Dual-Curing Solid Polymer Electrolytes with Enhanced Interfacial Contact for Achieving Ultrastable Lithium-Metal Batteries [J].
Qin, Shengyu ;
Yu, Yinuo ;
Zhang, Jianying ;
Ren, Yunxiao ;
Sun, Chang ;
Zhang, Shuoning ;
Zhang, Lanying ;
Hu, Wei ;
Yang, Huai ;
Yang, Dengke .
ADVANCED ENERGY MATERIALS, 2023, 13 (34)
[38]   Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries [J].
Li, Yuhan ;
Sun, Zongjie ;
Shi, Lei ;
Lu, Shiyao ;
Sun, Zehui ;
Shi, Yuchuan ;
Wu, Hu ;
Zhang, Yanfeng ;
Ding, Shujiang .
CHEMICAL ENGINEERING JOURNAL, 2019, 375
[39]   A Flexible Semi-Interpenetrating Network-Enhanced Ionogel Polymer Electrolyte for Highly Stable and Safe Lithium Metal Batteries [J].
Chen, Zheng ;
Yang, Yun ;
Su, Qinting ;
Huang, Songde ;
Song, Dakun ;
Ma, Rui ;
Zhu, Caizhen ;
Lv, Guanghui ;
Li, Cuihua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (35) :41946-41955
[40]   Self-shutdown function induced by sandwich-like gel polymer electrolytes for high safety lithium metal batteries [J].
Xie, Binxuan ;
Chen, Shimou ;
Chen, Yong ;
Liu, Lili .
RSC ADVANCES, 2021, 11 (23) :14036-14046