Strong skew commutativity preserving maps on von Neumann algebras

被引:27
作者
Qi, Xiaofei [1 ]
Hou, Jinchuan [1 ,2 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Von Neumann algebras; Prime rings; General preserving maps; Skew Lie products; POLYNOMIAL XY; PRODUCT; YX;
D O I
10.1016/j.jmaa.2012.07.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a von Neumann algebra without central summands of type I-1. Assume that Phi : M -> M is a surjective map. It is shown that Phi is strong skew commutativity preserving (that is, satisfies Phi(A)Phi(B) - Phi(B)Phi(A)(*) = AB - BA(*) for all A, B is an element of M) if and only if there exists some self-adjoint element Z in the center of M with Z(2) = I such that Phi(A) = ZA for all A is an element of M. The strong skew commutativity preserving maps on prime involution rings and prime involution algebras are also characterized. (C) 2012 Published by Elsevier Inc.
引用
收藏
页码:362 / 370
页数:9
相关论文
共 12 条
[1]  
Beidar K. I., 1996, RINGS GEN IDENTITIES
[2]  
Bresar M, 2000, PUBL MATH-DEBRECEN, V57, P121
[3]  
Bresar M., 2007, FUNCTIONAL IDENTITIE
[4]   On maps preserving zeros of the polynomial xy-yx [J].
Chebotar, MA ;
Fong, Y ;
Lee, PH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 (1-3) :230-243
[5]   Linear maps preserving elements annihilated by the polynomial XY - YX [J].
Cui, Jianlian ;
Hou, Jinchuan .
STUDIA MATHEMATICA, 2006, 174 (02) :183-199
[6]  
Cui JL, 2012, ACTA MATH SCI, V32, P531
[7]  
Kadison R. V., 1983, Fundamentals of the Theory of Operator Algebras I
[8]  
Kadison RV, 1986, FUNDAMENTALS THEORY, VII
[9]   LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS [J].
MIERS, CR .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (03) :717-&
[10]   A condition for a subspace of B(H) to be an ideal [J].
Molnar, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 (235) :229-234