Influence of Encoding Scheme on Protein Secondary Structure Prediction

被引:0
作者
Zou, Dongsheng [1 ]
He, Zhongshi [1 ]
He, Jingyuan [1 ]
Huang, Xiaofeng [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
来源
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 | 2008年
关键词
SVM; data encoding; protein secondary structure prediction; Profile encoding;
D O I
10.1109/WCICA.2008.4593133
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Secondary structure prediction of proteins has increasingly been a central research area in bioinformatics. In order to know which data encoding approach is more effective whiling predicting secondary structure using SVM, five approaches: ENCOrth, ENCFive, ENCCodBas, ENCCodExt and ENCProf are discussed in this paper. The results of data encoding are used as input of SVM. By performing ENCProf approach, the accuracy of Q3 can be improved 19.4%similar to 23.9% more than the other four approaches.
引用
收藏
页码:1439 / 1443
页数:5
相关论文
共 50 条
  • [21] A Comparative Study on Filtering Protein Secondary Structure Prediction
    Kountouris, Petros
    Agathocleous, Michalis
    Promponas, Vasilis J.
    Christodoulou, Georgia
    Hadjicostas, Simos
    Vassiliades, Vassilis
    Christodoulou, Chris
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 731 - 739
  • [22] Sample Reduction Strategies for Protein Secondary Structure Prediction
    Atasever, Sema
    Aydin, Zafer
    Erbay, Hasan
    Sabzekar, Mostafa
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [23] Transformer Encoder with Protein Language Model for Protein Secondary Structure Prediction
    Kazm, Ammar
    Ali, Aida
    Hashim, Haslina
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) : 13124 - 13132
  • [24] Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction
    S. Saraswathi
    J. L. Fernández-Martínez
    A. Kolinski
    R. L. Jernigan
    A. Kloczkowski
    Journal of Molecular Modeling, 2012, 18 : 4275 - 4289
  • [25] Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction
    Saraswathi, S.
    Fernandez-Martinez, J. L.
    Kolinski, A.
    Jernigan, R. L.
    Kloczkowski, A.
    JOURNAL OF MOLECULAR MODELING, 2012, 18 (09) : 4275 - 4289
  • [26] Effect of simple ensemble methods on protein secondary structure prediction
    Hafida Bouziane
    Belhadri Messabih
    Abdallah Chouarfia
    Soft Computing, 2015, 19 : 1663 - 1678
  • [27] Use of tetrapeptide signals for protein secondary-structure prediction
    Feng, Yonge
    Luo, Liaofu
    AMINO ACIDS, 2008, 35 (03) : 607 - 614
  • [28] Use of  tetrapeptide signals for protein secondary-structure prediction
    Yonge Feng
    Liaofu Luo
    Amino Acids, 2008, 35 : 607 - 614
  • [29] Estimating the Class Posterior Probabilities in Protein Secondary Structure Prediction
    Guermeur, Yann
    Thomarat, Fabienne
    PATTERN RECOGNITION IN BIOINFORMATICS, 2011, 7036 : 260 - 271
  • [30] Effect of simple ensemble methods on protein secondary structure prediction
    Bouziane, Hafida
    Messabih, Belhadri
    Chouarfia, Abdallah
    SOFT COMPUTING, 2015, 19 (06) : 1663 - 1678