Influence of Encoding Scheme on Protein Secondary Structure Prediction

被引:0
作者
Zou, Dongsheng [1 ]
He, Zhongshi [1 ]
He, Jingyuan [1 ]
Huang, Xiaofeng [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
来源
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23 | 2008年
关键词
SVM; data encoding; protein secondary structure prediction; Profile encoding;
D O I
10.1109/WCICA.2008.4593133
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Secondary structure prediction of proteins has increasingly been a central research area in bioinformatics. In order to know which data encoding approach is more effective whiling predicting secondary structure using SVM, five approaches: ENCOrth, ENCFive, ENCCodBas, ENCCodExt and ENCProf are discussed in this paper. The results of data encoding are used as input of SVM. By performing ENCProf approach, the accuracy of Q3 can be improved 19.4%similar to 23.9% more than the other four approaches.
引用
收藏
页码:1439 / 1443
页数:5
相关论文
共 50 条
[21]   Sample Reduction Strategies for Protein Secondary Structure Prediction [J].
Atasever, Sema ;
Aydin, Zafer ;
Erbay, Hasan ;
Sabzekar, Mostafa .
APPLIED SCIENCES-BASEL, 2019, 9 (20)
[22]   Hybrid SVM kernels for protein secondary structure prediction [J].
Altun, Gulsah ;
Hu, Hae-Jin ;
Brinza, Dumitru ;
Harrison, Robert W. ;
Zelikovsky, Alex ;
Pan, Yi .
2006 IEEE International Conference on Granular Computing, 2006, :762-765
[23]   Transformer Encoder with Protein Language Model for Protein Secondary Structure Prediction [J].
Kazm, Ammar ;
Ali, Aida ;
Hashim, Haslina .
ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) :13124-13132
[24]   Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction [J].
S. Saraswathi ;
J. L. Fernández-Martínez ;
A. Kolinski ;
R. L. Jernigan ;
A. Kloczkowski .
Journal of Molecular Modeling, 2012, 18 :4275-4289
[25]   Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction [J].
Saraswathi, S. ;
Fernandez-Martinez, J. L. ;
Kolinski, A. ;
Jernigan, R. L. ;
Kloczkowski, A. .
JOURNAL OF MOLECULAR MODELING, 2012, 18 (09) :4275-4289
[26]   Effect of simple ensemble methods on protein secondary structure prediction [J].
Bouziane, Hafida ;
Messabih, Belhadri ;
Chouarfia, Abdallah .
SOFT COMPUTING, 2015, 19 (06) :1663-1678
[27]   Estimating the Class Posterior Probabilities in Protein Secondary Structure Prediction [J].
Guermeur, Yann ;
Thomarat, Fabienne .
PATTERN RECOGNITION IN BIOINFORMATICS, 2011, 7036 :260-271
[28]   The Research of Protein Secondary Structure Prediction System Based on KDTICM [J].
Yang, Bingru ;
Hou, Wei ;
Xie, Yonghong ;
Wang, Lijun .
WCECS 2009: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, VOLS I AND II, 2009, :47-51
[29]   Parallel protein secondary structure prediction based on neural networks [J].
Zhong, W ;
Altun, G ;
Tian, XM ;
Harrison, R ;
Tai, PC ;
Pan, Y .
PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 :2968-2971
[30]   Use of tetrapeptide signals for protein secondary-structure prediction [J].
Feng, Yonge ;
Luo, Liaofu .
AMINO ACIDS, 2008, 35 (03) :607-614