Data Mining In Massive Spectral Data

被引:0
|
作者
Wang, Wenyu [1 ,2 ]
Wang, Xinjun [1 ]
Jiang, Bin [2 ]
Pan, Jingchang [2 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
[2] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
PCA; LOF; Data mining; SVM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
with the astronomical spectra data grows rapidly, it becomes impossible for astronomers to read all the data manually, especially for some sky survey telescopes like SLOAN which will yield immense amounts of data every observational night. Automated astronomical data analysis software and system will be very necessary and useful. In this paper, a data mining application based on PCA (Principal Component Analysis) and LOF (Local Outlier Factor) is explored. Massive spectral data are clustered after dimension reduction by PCA and singular spectra candidates can be found out automatically. Some rare celestial body candidates are found out in massive spectra data that proves out method is feasible.
引用
收藏
页码:2357 / 2363
页数:7
相关论文
共 50 条
  • [1] Data mining of spectral data
    A. B. Bogdanov
    I. A. Borisova
    V. V. Dyubanov
    N. G. Zagoruiko
    O. A. Kutnenko
    A. V. Kuchkin
    M. A. Meshcheryakov
    N. G. Milovzorov
    Optoelectronics, Instrumentation and Data Processing, 2009, 45 (1) : 62 - 69
  • [2] Data Mining of Spectral Data
    Bogdanov, A. B.
    Borisova, I. A.
    Dyubanov, V. V.
    Zagoruiko, N. G.
    Kutnenko, O. A.
    Kuchkin, A. V.
    Meshcheryakov, M. A.
    Milovzorov, N. G.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2009, 45 (01) : 62 - 69
  • [3] Approximate Data Mining using Sketches for Massive Data
    Gupta, Parul
    Agnihotri, Swati
    Saha, Suman
    FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE: MODELING TECHNIQUES AND APPLICATIONS (CIMTA) 2013, 2013, 10 : 781 - 787
  • [4] Adaptive Data Mining Algorithm under the Massive Data
    Mo, Weijian
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND ELECTRONIC TECHNOLOGY, 2015, 3 : 37 - 40
  • [5] Massive data sets, data mining, and decision support
    Dalal, S
    Dumais, S
    Kettenring, J
    Kurien, V
    McIntosh, A
    Maitra, R
    MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 329 - 329
  • [6] Data mining of massive datasets in healthcare
    Goodall, CR
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (03) : 620 - 634
  • [7] Multidimensional Mining of Massive Text Data
    Zhang, Chao
    Han, Jiawei
    Synthesis Lectures on Data Mining and Knowledge Discovery, 2019, 11 (02): : 1 - 198
  • [8] The opportunistic projection mining algorithm in massive data
    Lian, Wenwu
    Fu, Lingling
    Huang, Chao
    International Journal of Database Theory and Application, 2015, 8 (04): : 1 - 10
  • [9] Massive data mining for polymorphic code detection
    Payer, U
    Teufl, P
    Kraxberger, S
    Lamberger, M
    COMPUTER NETWORK SECURITY, PROCEEDINGS, 2005, 3685 : 448 - 453
  • [10] Massive Data Mining, Cyber Security Approach
    Guizani, Sghaier
    2018 14TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2018, : 1368 - 1372