A generalized Hirota-Satsuma coupled Korteweg-de Vries equation and Miura transformations

被引:155
作者
Wu, YT [1 ]
Geng, XG
Hu, XB
Zhu, SM
机构
[1] Hong Kong Baptist Univ, Dept Comp Studies, 224 Waterloo Rd, Kowloon, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
[3] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[4] Acad Sinica, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[5] Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金; 河南省科学基金;
关键词
D O I
10.1016/S0375-9601(99)00163-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By introducing a 4 X 4 matrix spectral problem with three potentials, we propose a new hierarchy of nonlinear evolution equations. A typical equation in the hierarchy is a generalization of the Hirota-Satsuma coupled Korteweg-de Vries equation. Also, it is shown that the hierarchy possesses the generalized Hamiltonian form. Further, a Miura transformation related to the typical equation and its reductions are derived, from which some new coupled modified Korteweg-de Vries equations are obtained. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 7 条
[1]   ON THE COMPLETE SOLUTION OF THE HIROTA-SATSUMA SYSTEM THROUGH THE DRESSING OPERATOR TECHNIQUE [J].
CHOWDHURY, AR ;
BASAK, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (16) :L863-L868
[2]   ON THE INTEGRABILITY OF A SYSTEM OF COUPLED KDV EQUATIONS [J].
DODD, R ;
FORDY, A .
PHYSICS LETTERS A, 1982, 89 (04) :168-170
[3]   New finite-dimensional integrable systems and explicit solutions of Hirota-Satsuma coupled Kortweg-de Vries equation [J].
Geng, XG ;
Wu, YT .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) :3069-3080
[4]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[5]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[6]   A HIERARCHY OF COUPLED KORTEWEG-DEVRIES EQUATIONS [J].
LEVI, D .
PHYSICS LETTERS A, 1983, 95 (01) :7-10
[7]  
TU GZ, 1989, J PHYS A-MATH GEN, V22, P2375, DOI 10.1088/0305-4470/22/13/031