Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention

被引:96
作者
Hayta, Emrullah [1 ]
Elden, Hasan [1 ]
机构
[1] Cumhuriyet Univ, Fac Med, Dept Phys Med & Rehabil, Sivas, Turkey
关键词
Spinal cord injury; NSAIDs; RhoA; INTRATHECAL KETOROLAC; TRAUMATIC BRAIN; FUNCTIONAL DEFICITS; AXON REGENERATION; NEUROPATHIC PAIN; RHOA INHIBITION; MOUSE MODEL; INDOMETHACIN; GLUTAMATE; RATS;
D O I
10.1016/j.jchemneu.2017.08.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acute spinal cord injury (SCI) is one of the serious central nervous system injuries, which can lead to significant neurological impairments and a reduction in quality of life with loss in sensory and motor functions. Although recent advancements contribute to the understanding of the underlying pathophysiological processes developed after SCI, currently, there is limited innovative and effective treatment options besides conventional rehabilitation and management of SCI to alleviate the condition. Improvements in neurological functions of the individuals with SCI depend mainly on the mechanical damage occurring in the primary injury and on pathophysiological alterations associated with secondary damage. Since in the treatment of SCI, there are no therapeutic strategies for neurological alterations caused by primary injury, all innovative treatments utilize treatment strategies targeting to the secondary damage. Non-steroidal anti-inflammatory drugs (NSAIDs) have become the focus of various experimental SCI models as these may be expected to reduce inflammation in secondary damage due to their potent anti-inflammatory effects. Experimentally, they exhibit neuro-protective and apoptotic effects by suppressing axonal re-growth, thus inhibiting the RhoA pathway, which leads to apoptotic cell death, in addition to the recovery of motor functions along with histological improvement. However, histological improvement is not significantly associated with improvement of motor function. The main target of SCI research should not only focus on histological improvement of lesion, but also on its potential for contribution to effective clinical therapies targeting improvements in sensory and motor functions. In the present review, we have summarized the current knowledge about pathophysiologic mechanisms working after SCI and discussed the potential of NSAIDs as promising agents in the management of SCI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 97 条
[1]   Randomized, Double-Blind, Placebo-Controlled Clinical Trial on the Efficacy of 0.5% Indomethacin Eye Drops in Uveitic Macular Edema [J].
Allegri, Pia ;
Murialdo, Ugo ;
Peri, Simona ;
Carniglia, Rosanna ;
Crivelli, Maria Grazia ;
Compiano, Silvia ;
Autuori, Silvia ;
Mastromarino, Antonio ;
Zurria, Monia ;
Marrazzo, Giuseppina .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (03) :1463-1470
[2]  
Amin SB, 2011, J PERINAT MED, V39, P55, DOI [10.1515/JPM.2010.113, 10.1515/jpm.2010.113]
[3]   Neuroprotective effects of ketorolac tromethamine after spinal cord injury in rats: an ultrastructural study [J].
Bagriyanik, Husnu Alper ;
Ozogul, Candan ;
Alaygut, Ergin ;
Gokmen, Necati ;
Kucukguclu, Semih ;
Gunerli, Ali ;
Yilmaz, Osman .
ADVANCES IN THERAPY, 2008, 25 (02) :152-158
[4]   Antioxidant therapies in traumatic brain and spinal cord injury [J].
Bains, Mona ;
Hall, Edward D. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2012, 1822 (05) :675-684
[5]   Vascular Pathology as a Potential Therapeutic Target in SCI [J].
Benton, Richard L. ;
Hagg, Theo .
TRANSLATIONAL STROKE RESEARCH, 2011, 2 (04) :556-574
[6]   Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats [J].
Bertrand, J ;
Winton, MJ ;
Rodriguez-Hernandez, N ;
Campenot, RB ;
McKerracher, L .
JOURNAL OF NEUROSCIENCE, 2005, 25 (05) :1113-1121
[7]   Free radical inhibitors (FRI) can prevent cell-mediated LDL oxidation under ischemia (I) and reperfusion (R) of vascular wall in situ [J].
Bilenko, MV ;
Khilchenko, AV .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2002, 34 (06) :A10-A10
[8]  
Blight A R, 2001, Curr Opin Investig Drugs, V2, P801
[9]   A hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury [J].
Campolo, Michela ;
Esposito, Emanuela ;
Ahmad, Akbar ;
Di Paola, Rosanna ;
Wallace, John L. ;
Cuzzocrea, Salvatore .
FASEB JOURNAL, 2013, 27 (11) :4489-4499
[10]   Intrathecal Delivery of Ketorolac Loaded In Situ Gels for Prolonged Analgesic and Anti-Inflammatory Activity in Vertebral Fracture [J].
Cao, Shu-E ;
Chen, Sheng-Yang ;
Tian, Jian-Min ;
Zhang, Xiao-Ran ;
Liu, Jun ;
Gong, Hong-Yan ;
Yue, Xiu-Qin .
TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2016, 15 (01) :5-11