Machine-learning-based interatomic potentials for advanced manufacturing

被引:11
作者
Yu, Wei [1 ]
Ji, Chaoyue [2 ]
Wan, Xuhao [1 ]
Zhang, Zhaofu [3 ]
Robertson, John [1 ,3 ]
Liu, Sheng [2 ,4 ]
Guo, Yuzheng [1 ,2 ]
机构
[1] Wuhan Univ, Sch Elect Engn & Automat, Wuhan, Peoples R China
[2] Wuhan Univ, Inst Technol Sci, Wuhan, Peoples R China
[3] Univ Cambridge, Dept Engn, Cambridge, England
[4] Wuhan Univ, Sch Power & Mech Engn, Wuhan, Peoples R China
来源
INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS | 2021年 / 1卷 / 02期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
advanced manufacturing; interatomic potential; machine learning; molecular dynamics; REGRESSION; APPROXIMATE; SIMULATIONS; CONSISTENCY; NETWORKS; MODEL;
D O I
10.1002/msd2.12021
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper summarizes the progress of machine-learning-based interatomic potentials and their applications in advanced manufacturing. Interatomic potential is essential for classical molecular dynamics. The advancements made in machine learning (ML) have enabled the development of fast interatomic potential with ab initio accuracy. The accelerated atomic simulation can greatly transform the design principle of manufacturing technology. The most widely used supervised and unsupervised ML methods are summarized and compared. Then, the emerging interatomic models based on ML are discussed: Gaussian approximation potential, spectral neighbor analysis potential, deep potential molecular dynamics, SCHNET, hierarchically interacting particle neural network, and fast learning of atomistic rare events.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 121 条
[1]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[2]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]   Ab initio calculations about intrinsic point defects and He in W [J].
Becquart, C. S. ;
Domain, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 255 (01) :23-26
[5]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[6]  
Bengio Y., 2007, Advances in Neural Information Processing Systems, P153
[7]   Fe-Ni many-body potential for metallurgical applications [J].
Bonny, G. ;
Pasianot, R. C. ;
Malerba, L. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (02)
[8]   Atomistic simulations of thermal conductivity in GeTe nanowires [J].
Bosoni, E. ;
Campi, D. ;
Donadio, D. ;
Sosso, G. C. ;
Behler, J. ;
Bernasconi, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (05)
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Gaussian approximation potentials for body-centered-cubic transition metals [J].
Byggmastar, J. ;
Nordlund, K. ;
Djurabekova, F. .
PHYSICAL REVIEW MATERIALS, 2020, 4 (09)