A study on ferroelectric phase shifter with photonic-bandgap (PBG) structure

被引:0
|
作者
Kim, YT [1 ]
Kwak, MH [1 ]
Ryu, HC [1 ]
Moon, SE [1 ]
Lee, SJ [1 ]
Kang, KY [1 ]
机构
[1] Elect & Telecommun Res Inst, Basic Res Lab, Taejon 305350, South Korea
关键词
photonic-bandgap (PBG); ferroelectric phase shifter; finite element method;
D O I
10.1080/10584580500414101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to get the low-loss microwave tunable device, we adopted the photonic-bandgap (PBG) structure based on BST thin films on MgO (001) single crystal substrate. We designed and fabricated a microstrip ferroelectric phase shifter with PBG structure for microwave integrated circuit. The proposed multilayer PBG structure consisted of microstrip tunable interdigital (IDT) patterns atop BST thin film and two square defected areas in the ground metallic plane. To analyze microwave characteristics of the proposed multilayer PBG structure, finite-element-method (FEM) was used. The fabricated phase shifter shows 103 degrees differential phase shift, 3.3 dB insertion loss, and return loss of better than 20 dB at 20 GHz with dc-bias variation from 0 V to 110 V.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [41] Author Correction: A ferroelectric multilevel non-volatile photonic phase shifter
    Jacqueline Geler-Kremer
    Felix Eltes
    Pascal Stark
    David Stark
    Daniele Caimi
    Heinz Siegwart
    Bert Jan Offrein
    Jean Fompeyrine
    Stefan Abel
    Nature Photonics, 2022, 16 (7) : 548 - 548
  • [42] Air-core photonic-bandgap fiber-optic gyroscope
    Kim, Hyang Kyun
    Digonnet, Michel J. F.
    Kino, Gordon S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (08) : 3169 - 3174
  • [43] Numerical study of the photonic-bandgap effect in two-dimensional slab photonic structures with long-range order
    Moon, Suel-Ki
    Yang, Jin-Kyu
    JOURNAL OF OPTICS, 2013, 15 (07)
  • [44] Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices
    Onuki, T.
    Ohtera, Y.
    Tokizaki, T.
    JOURNAL OF MICROSCOPY-OXFORD, 2008, 229 (03): : 447 - 451
  • [45] Classification of the Core Modes of Hollow-Core Photonic-Bandgap Fibers
    Aghaie, Kiarash Zamani
    Dangui, Vinayak
    Digonnet, Michel J. F.
    Fan, Shanhui
    Kino, Gordon S.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2009, 45 (09) : 1192 - 1200
  • [46] Investigations into nonuniform photonic-bandgap microstripline low-pass filters
    Karmakar, NC
    Mollah, MN
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (02) : 564 - 572
  • [47] Modeling Loss and Backscattering in a Photonic-Bandgap Fiber Using Strong Perturbation
    Aghaie, Kiarash Zamani
    Digonnet, Michel J. F.
    Fan, Shanhui
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES III, 2013, 8632
  • [48] Edge coupler links all-solid photonic-bandgap fibers
    Hitz, Breck
    PHOTONICS SPECTRA, 2007, 41 (12) : 82 - 83
  • [49] Photonic-bandgap lasers - Fiber laser emits from its surface
    Overton, Gail
    LASER FOCUS WORLD, 2006, 42 (07): : 23 - 24
  • [50] Birefringence Analysis of Photonic-Bandgap Fibers Using the Hexagonal Yee's Cell
    Aghaie, Kiarash Zamani
    Fan, Shanhui
    Digonnet, Michel J. F.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (06) : 920 - 930