A study on ferroelectric phase shifter with photonic-bandgap (PBG) structure

被引:0
|
作者
Kim, YT [1 ]
Kwak, MH [1 ]
Ryu, HC [1 ]
Moon, SE [1 ]
Lee, SJ [1 ]
Kang, KY [1 ]
机构
[1] Elect & Telecommun Res Inst, Basic Res Lab, Taejon 305350, South Korea
关键词
photonic-bandgap (PBG); ferroelectric phase shifter; finite element method;
D O I
10.1080/10584580500414101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to get the low-loss microwave tunable device, we adopted the photonic-bandgap (PBG) structure based on BST thin films on MgO (001) single crystal substrate. We designed and fabricated a microstrip ferroelectric phase shifter with PBG structure for microwave integrated circuit. The proposed multilayer PBG structure consisted of microstrip tunable interdigital (IDT) patterns atop BST thin film and two square defected areas in the ground metallic plane. To analyze microwave characteristics of the proposed multilayer PBG structure, finite-element-method (FEM) was used. The fabricated phase shifter shows 103 degrees differential phase shift, 3.3 dB insertion loss, and return loss of better than 20 dB at 20 GHz with dc-bias variation from 0 V to 110 V.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [21] Improved coplanar waveguide (CPW) bandstop filter with photonic bandgap (PBG) structure
    Her, ML
    Chang, CM
    Wang, YZ
    Kung, FH
    Chiou, YC
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 38 (04) : 274 - 277
  • [22] Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers
    Dangui, V
    Kim, HK
    Digonnet, MJF
    Kino, GS
    OPTICS EXPRESS, 2005, 13 (18): : 6669 - 6684
  • [23] A superconducting quantum simulator based on a photonic-bandgap metamaterial
    Zhang, Xueyue
    Kim, Eunjong
    Mark, Daniel K.
    Choi, Soonwon
    Painter, Oskar
    SCIENCE, 2023, 379 (6629) : 278 - 283
  • [24] PHOTONIC-BANDGAP FIBRE Colour-tunable textiles
    Won, Rachel
    NATURE PHOTONICS, 2008, 2 (11) : 650 - 650
  • [25] High-power photonic-bandgap fiber laser
    Fevrier, Sebastien
    Gaponov, Dmitry D.
    Roy, Philippe
    Likhachev, Mikhail E.
    Semjonov, Sergei L.
    Bubnov, Mikhail M.
    Dianov, Evgeny M.
    Yashkov, Mikhail Yu.
    Khopin, Vladimir E.
    Salganskii, Mikhail Yu.
    Guryanov, Aleksei N.
    OPTICS LETTERS, 2008, 33 (09) : 989 - 991
  • [26] Monolithic waveguide filters using printed photonic-bandgap materials
    Kyriazidou, CA
    Contopanagos, HF
    Alexópoulos, NG
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (02) : 297 - 307
  • [27] A polarization controller for air-core photonic-bandgap fiber
    Terrel, Matthew
    Digonnet, Michel
    Fan, Shanhui
    2006 OPTICAL FIBER COMMUNICATION CONFERENCE/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-6, 2006, : 681 - 683
  • [28] Organic lasers based on lithographically defined photonic-bandgap resonators
    Berggren, M
    Dodabalapur, A
    Slusher, RE
    Bao, Z
    Timko, A
    Nalamasu, O
    ELECTRONICS LETTERS, 1998, 34 (01) : 90 - 91
  • [29] Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities
    Png, Ching Eng
    Sun, Jin
    Li, Er Ping
    2006 IEEE CONFERENCE ON EMERGING TECHNOLOGIES - NANOELECTRONICS, 2006, : 249 - +
  • [30] Tunable and sensitive biophotonic waveguides based on photonic-bandgap microcavities
    Png, Ching Eng
    Lim, Soon Thor
    Li, Er Ping
    Reed, Graham T.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (05) : 478 - 484