A study on ferroelectric phase shifter with photonic-bandgap (PBG) structure

被引:0
|
作者
Kim, YT [1 ]
Kwak, MH [1 ]
Ryu, HC [1 ]
Moon, SE [1 ]
Lee, SJ [1 ]
Kang, KY [1 ]
机构
[1] Elect & Telecommun Res Inst, Basic Res Lab, Taejon 305350, South Korea
关键词
photonic-bandgap (PBG); ferroelectric phase shifter; finite element method;
D O I
10.1080/10584580500414101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to get the low-loss microwave tunable device, we adopted the photonic-bandgap (PBG) structure based on BST thin films on MgO (001) single crystal substrate. We designed and fabricated a microstrip ferroelectric phase shifter with PBG structure for microwave integrated circuit. The proposed multilayer PBG structure consisted of microstrip tunable interdigital (IDT) patterns atop BST thin film and two square defected areas in the ground metallic plane. To analyze microwave characteristics of the proposed multilayer PBG structure, finite-element-method (FEM) was used. The fabricated phase shifter shows 103 degrees differential phase shift, 3.3 dB insertion loss, and return loss of better than 20 dB at 20 GHz with dc-bias variation from 0 V to 110 V.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 50 条
  • [1] A New Uniplanar Compact Photonic-bandgap (UC-PBG) Structure in Transmission Line
    Luo, Wuqiong
    Chen, Bo
    PIERS 2014 GUANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2014, : 1933 - 1935
  • [2] A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure
    Yang, FR
    Ma, KP
    Qian, YX
    Itoh, T
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (11) : 2092 - 2098
  • [3] A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits
    Yang, FR
    Ma, KP
    Qian, YX
    Itoh, T
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (08) : 1509 - 1514
  • [4] Photonic bandgap (PBG) accelerator structure design
    Marsh, R. A.
    Shapiro, M. A.
    Temkin, R. J.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 2249 - 2251
  • [5] Directive photonic-bandgap antennas
    Thèvenot, M
    Cheype, C
    Reineix, A
    Jecko, B
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1999, 47 (11) : 2115 - 2122
  • [6] Photonic-bandgap microcavities in optical waveguides
    Foresi, JS
    Villeneuve, PR
    Ferrera, J
    Thoen, ER
    Steinmeyer, G
    Fan, S
    Joannopoulos, JD
    Kimerling, LC
    Smith, HI
    Ippen, EP
    NATURE, 1997, 390 (6656) : 143 - 145
  • [7] Effect of substrate parameters on planar photonic bandgap (PBG) structure
    Mollah, MN
    Karmakar, NC
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 811 - 814
  • [8] Photonic-bandgap planar hollow waveguide
    Fedotov, AB
    Naumov, AN
    Sidorov-Biryukov, DA
    Chigarev, NV
    Zheltikov, AM
    Haus, JW
    Miles, RB
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (05) : 1162 - 1168
  • [9] Photonic-bandgap microcavities in optical waveguides
    J. S. Foresi
    P. R. Villeneuve
    J. Ferrera
    E. R. Thoen
    G. Steinmeyer
    S. Fan
    J. D. Joannopoulos
    L. C. Kimerling
    Henry I. Smith
    E. P. Ippen
    Nature, 1997, 390 : 143 - 145
  • [10] Hybrid photonic-bandgap accelerating cavities
    Di Gennaro, E.
    Zannini, C.
    Savo, S.
    Andreone, A.
    Masullo, M. R.
    Castaldi, G.
    Gallina, I.
    Galdi, V.
    NEW JOURNAL OF PHYSICS, 2009, 11