Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery

被引:324
作者
Chen, Hao [1 ]
Adekoya, David [1 ]
Hencz, Luke [1 ]
Ma, Jun [2 ]
Chen, Su [3 ]
Yan, Cheng [3 ]
Zhao, Huijun [1 ]
Cui, Guanglei [2 ]
Zhang, Shanqing [1 ]
机构
[1] Griffith Univ, Ctr Clean Environm & Energy, Gold Coast, Qld 4222, Australia
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Ind Energy Storage Res Inst, Qingdao 266101, Peoples R China
[3] Queensland Univ Technol, Sch Chem, Phys & Mech Engn, Brisbane, Qld 64001, Australia
基金
澳大利亚研究理事会;
关键词
all-solid-state batteries; CeO; (2) nanotubes; lithium ion batteries; CA-DOPED CEO2; POLYMER ELECTROLYTES; MEMBRANE; CERIA; PARTICLES;
D O I
10.1002/aenm.202000049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stable and seamless interfaces among solid components in all-solid-state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all-solid-state composite electrolyte is synthesized based on oxygen-vacancy-rich Ca-doped CeO2 (Ca-CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca-CeO2/LiTFSI/PEO. Ca-CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as-prepared electrolyte exhibits high ionic conductivity of 1.3 x 10(-4) S cm(-1) at 60 degrees C, a high lithium ion transference number of 0.453, and high-voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca-CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as-prepared Ca-CeO2/LiTFSI/PEO composite electrolyte deliver high-rate capability and high-voltage stability.
引用
收藏
页数:13
相关论文
共 64 条
  • [1] One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique
    An, Geon-Hyoung
    Jeong, Sang-Yong
    Seong, Tae-Yeon
    Ahn, Hyo-Jin
    [J]. MATERIALS LETTERS, 2011, 65 (15-16) : 2377 - 2380
  • [2] Understanding the effect of calcium on the properties of ceria prepared by a mixed fuel process
    Banerjee, Suparna
    Devi, Parukuttyamma Sujatha
    [J]. SOLID STATE IONICS, 2008, 179 (17-18) : 661 - 669
  • [3] NATURE OF ELECTRICAL CONDUCTION TRANSIENTS OBSERVED IN CEO2 AND CA-DOPED CEO2
    BLUMENTH.RN
    PINZ, BA
    [J]. JOURNAL OF APPLIED PHYSICS, 1967, 38 (05) : 2376 - &
  • [4] COMPOSITE POLYMER ELECTROLYTES
    CAPUANO, F
    CROCE, F
    SCROSATI, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) : 1918 - 1922
  • [5] In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries
    Chai, Jingchao
    Liu, Zhihong
    Ma, Jun
    Wang, Jia
    Liu, Xiaochen
    Liu, Haisheng
    Zhang, Jianjun
    Cui, Guanglei
    Chen, Liquan
    [J]. ADVANCED SCIENCE, 2017, 4 (02):
  • [6] Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries
    Chen, Long
    Li, Wenxin
    Fan, Li-Zhen
    Nan, Ce-Wen
    Zhang, Qiang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
  • [7] Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping
    Chen, Xiaobo
    Li, Guangshe
    Su, Yiguo
    Qiu, Xiaoqing
    Li, Liping
    Zou, Zhigang
    [J]. NANOTECHNOLOGY, 2009, 20 (11)
  • [8] Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework
    Chen, Xinzhi
    He, Wenjun
    Ding, Liang-Xin
    Wang, Suqing
    Wang, Haihui
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) : 938 - 944
  • [9] SM2O3 composite PEO solid polymer electrolyte
    Chu, PP
    Reddy, MJ
    [J]. JOURNAL OF POWER SOURCES, 2003, 115 (02) : 288 - 294
  • [10] Magnetic structure of bixbyite α-Mn2O3: A combined DFT+U and neutron diffraction study
    Cockayne, Eric
    Levin, Igor
    Wu, Hui
    Llobet, Anna
    [J]. PHYSICAL REVIEW B, 2013, 87 (18):