Robust classification of salient links in complex networks

被引:120
作者
Grady, Daniel [1 ]
Thiemann, Christian [1 ,2 ]
Brockmann, Dirk [1 ,3 ]
机构
[1] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[2] Max Planck Inst Dynam & Selbstorg, Gottingen, Germany
[3] Northwestern Univ, NW Inst Complex Syst, Evanston, IL USA
关键词
TRANSPORTATION NETWORK; ORGANIZATION; WEB; CENTRALITY; EMERGENCE; MODEL;
D O I
10.1038/ncomms1847
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex networks in natural, social and technological systems generically exhibit an abundance of rich information. Extracting meaningful structural features from data is one of the most challenging tasks in network theory. Many methods and concepts have been proposed to address this problem such as centrality statistics, motifs, community clusters and backbones, but such schemes typically rely on external and arbitrary parameters. It is unknown whether generic networks permit the classification of elements without external intervention. Here we show that link salience is a robust approach to classifying network elements based on a consensus estimate of all nodes. A wide range of empirical networks exhibit a natural, network-implicit classification of links into qualitatively distinct groups, and the salient skeletons have generic statistical properties. Salience also predicts essential features of contagion phenomena on networks, and points towards a better understanding of universal features in empirical networks that are masked by their complexity.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   A general model for food web structure [J].
Allesina, Stefano ;
Alonso, David ;
Pascual, Mercedes .
SCIENCE, 2008, 320 (5876) :658-661
[3]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[4]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[5]  
[Anonymous], 2007, Scale-Free Networks: Complex Webs in Nature and Technology
[6]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[7]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[8]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[9]   Spatial networks [J].
Barthelemy, Marc .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 499 (1-3) :1-101
[10]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308