The graded Witt group kernel of biquadratic extensions in characteristic two

被引:5
|
作者
Aravire, Roberto [2 ]
Jacob, Bill [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Univ Arturo Prat, Iquique, Chile
关键词
Quadratic forms; Differential forms; Bilinear forms; Witt groups; GALOIS COHOMOLOGY; FIELD-EXTENSIONS; BRAUER GROUPS; K-THEORY; FORMS; RINGS;
D O I
10.1016/j.jalgebra.2012.07.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Baeza showed that when char(F) = 2 if E/F is the separable biquadratic extension E = F[p(-1)(b(1)), p(-1)(b(2))], then ker[W-q(F) -> W-q(E)] = W F . [1, b(1)] + W F . [1, b(2)]. Here we give the analogous result for the graded Witt group. Specifically we obtain an exact sequence nu(F)(n,1) circle plus nu(F)(n,1) -> H-2(n+1) F -> H-2(n+1) E from which the result for GW(q)F follows by the isomorphisms of Kato. Applications to 2-algebras of exponent and index 4 are also given. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 319
页数:23
相关论文
共 10 条