Extreme value statistics of positive recurrent centrally biased random walks

被引:8
作者
Artuso, Roberto [1 ,2 ,3 ]
Onofri, Manuele [1 ,2 ]
Pozzoli, Gaia [1 ,2 ,3 ]
Radice, Mattia [4 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[2] Univ Insubria, Ctr Nonlinear & Complex Syst, Via Valleggio 11, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[4] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
extreme value; stationary states; first passage; NONHOMOGENEOUS RANDOM-WALKS; 1ST-PASSAGE PROPERTIES; PERSISTENCE; FREQUENCY; MAXIMUM;
D O I
10.1088/1742-5468/ac98bd
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the extreme value statistics of centrally-biased random walks with asymptotically-zero drift in the ergodic regime. We fully characterize the asymptotic distribution of the maximum for this class of Markov chains lacking translational invariance, with a particular emphasis on the relation between the time scaling of the expected value of the maximum and the stationary distribution of the process.
引用
收藏
页数:29
相关论文
共 57 条
[1]  
Abramowitz M., 1970, Handbook of Mathematical Functions, V9th edn.
[2]   Quantitative immunology for physicists [J].
Altan-Bonnet, Gregoire ;
Mora, Thierry ;
Walczak, Aleksandra M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 849 :1-83
[3]  
[Anonymous], 1955, Proc. Camb. Phil. Soc.
[4]   BREAKING RECENT GLOBAL TEMPERATURE RECORDS [J].
BASSETT, GW .
CLIMATIC CHANGE, 1992, 21 (03) :303-315
[5]   Random walks in logarithmic and power-law potentials, nonuniversal persistence, and vortex dynamics in the two-dimensional XY model [J].
Bray, AJ .
PHYSICAL REVIEW E, 2000, 62 (01) :103-112
[6]   Persistence and first-passage properties in nonequilibrium systems [J].
Bray, Alan J. ;
Majumdar, Satya N. ;
Schehr, Gregory .
ADVANCES IN PHYSICS, 2013, 62 (03) :225-361
[7]   Amplification of flood frequencies with local sea level rise and emerging flood regimes [J].
Buchanan, Maya K. ;
Oppenheimer, Michael ;
Kopp, Robert E. .
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (06)
[8]   THE GILLIS-DOMB-FISHER CORRELATED RANDOM-WALK [J].
CHEN, A ;
RENSHAW, E .
JOURNAL OF APPLIED PROBABILITY, 1992, 29 (04) :792-813
[9]   Precise asymptotics for a random walker's maximum [J].
Comtet, A ;
Majumdar, SN .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :231-247
[10]   Solution of the Fokker-Planck Equation with a Logarithmic Potential [J].
Dechant, A. ;
Lutz, E. ;
Barkai, E. ;
Kessler, D. A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) :1524-1545